3.1 Vereenvoudig:
$$ \left( -2 \sqrt{a} \right)^8 $$
3.2 Los op vir $x$:
$$ \log_3(3x-2) + \log_0,5 = 3 $$
3.3 Indien \( \log_2 a = b \) en \( \log_3 5 = c \), bepaal die waarde van \( \log \sqrt{0,6} \) in terme van a en b - NSC Technical Mathematics - Question 3 - 2019 - Paper 1
Question 3
3.1 Vereenvoudig:
$$ \left( -2 \sqrt{a} \right)^8 $$
3.2 Los op vir $x$:
$$ \log_3(3x-2) + \log_0,5 = 3 $$
3.3 Indien \( \log_2 a = b \) en \( \log_3 5 = c \), ... show full transcript
Worked Solution & Example Answer:3.1 Vereenvoudig:
$$ \left( -2 \sqrt{a} \right)^8 $$
3.2 Los op vir $x$:
$$ \log_3(3x-2) + \log_0,5 = 3 $$
3.3 Indien \( \log_2 a = b \) en \( \log_3 5 = c \), bepaal die waarde van \( \log \sqrt{0,6} \) in terme van a en b - NSC Technical Mathematics - Question 3 - 2019 - Paper 1
Step 1
Vereenvoudig: \( \left( -2 \sqrt{a} \right)^8 \)
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Om ( \left( -2 \sqrt{a} \right)^8 ) te vereenvoudig, gebruik ons die eksponentiële eienskappe:
(−2a)8=(−2)8⋅(a)8=256a4.
Die vereenvoudigde vorm is dus ( 256 a^4 ).
Step 2
Los op vir $x$: \( \log_3(3x-2) + \log_{0.5} = 3 \)
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!