Photo AI

3.1 Simplify the following without the use of a calculator: 3.1.1 \( \frac{8 x^3 y^2}{16 x^4 y^4} \) (leave the answer with positive exponents) 3.1.2 \( \frac{\sqrt{48} + \sqrt{12}}{\sqrt{27}} \) 3.2 If \( \log 5 = m \), determine the following in terms of m: 3.2.1 \( \log 25 \) 3.2.2 \( \log_{2} (x + 3) - 3 = - \log_{2} (x - 4) \) 3.3 Solve for x: \( \log_{2} (x + 3) - 3 = - \log_{2} (x - 4) \) 3.4 Given complex numbers: \( z_1 = -1 + 3i \) and \( z_2 = \sqrt{2} \text{ cis } 135^{\circ} \) 3.4.1 Write down the conjugate of \( z_1 \) - NSC Technical Mathematics - Question 3 - 2022 - Paper 1

Question icon

Question 3

3.1-Simplify-the-following-without-the-use-of-a-calculator:--3.1.1--\(-\frac{8-x^3-y^2}{16-x^4-y^4}-\)-(leave-the-answer-with-positive-exponents)--3.1.2--\(-\frac{\sqrt{48}-+-\sqrt{12}}{\sqrt{27}}-\)--3.2-If-\(-\log-5-=-m-\),-determine-the-following-in-terms-of-m:--3.2.1--\(-\log-25-\)--3.2.2--\(-\log_{2}-(x-+-3)---3-=---\log_{2}-(x---4)-\)--3.3-Solve-for-x:--\(-\log_{2}-(x-+-3)---3-=---\log_{2}-(x---4)-\)--3.4-Given-complex-numbers:-\(-z_1-=--1-+-3i-\)-and-\(-z_2-=-\sqrt{2}-\text{-cis-}-135^{\circ}-\)--3.4.1--Write-down-the-conjugate-of-\(-z_1-\)-NSC Technical Mathematics-Question 3-2022-Paper 1.png

3.1 Simplify the following without the use of a calculator: 3.1.1 \( \frac{8 x^3 y^2}{16 x^4 y^4} \) (leave the answer with positive exponents) 3.1.2 \( \frac{\s... show full transcript

Worked Solution & Example Answer:3.1 Simplify the following without the use of a calculator: 3.1.1 \( \frac{8 x^3 y^2}{16 x^4 y^4} \) (leave the answer with positive exponents) 3.1.2 \( \frac{\sqrt{48} + \sqrt{12}}{\sqrt{27}} \) 3.2 If \( \log 5 = m \), determine the following in terms of m: 3.2.1 \( \log 25 \) 3.2.2 \( \log_{2} (x + 3) - 3 = - \log_{2} (x - 4) \) 3.3 Solve for x: \( \log_{2} (x + 3) - 3 = - \log_{2} (x - 4) \) 3.4 Given complex numbers: \( z_1 = -1 + 3i \) and \( z_2 = \sqrt{2} \text{ cis } 135^{\circ} \) 3.4.1 Write down the conjugate of \( z_1 \) - NSC Technical Mathematics - Question 3 - 2022 - Paper 1

Step 1

Simplify the following without the use of a calculator: \( \frac{8 x^3 y^2}{16 x^4 y^4} \)

96%

114 rated

Answer

To simplify ( \frac{8 x^3 y^2}{16 x^4 y^4} ):

  1. Divide the coefficients: ( \frac{8}{16} = \frac{1}{2} )
  2. For ( x ): ( \frac{ x^3 }{ x^4 } = \frac{1}{x} )
  3. For ( y ): ( \frac{ y^2 }{ y^4 } = \frac{1}{y^2} )

Thus, the simplified expression is ( \frac{1}{2} \cdot \frac{1}{x} \cdot \frac{1}{y^2} = \frac{1}{2xy^2} ) (with positive exponents).

Step 2

Simplify the following without the use of a calculator: \( \frac{\sqrt{48} + \sqrt{12}}{\sqrt{27}} \)

99%

104 rated

Answer

To simplify ( \frac{\sqrt{48} + \sqrt{12}}{\sqrt{27}} ):

  1. Simplify ( \sqrt{48} = 4\sqrt{3} ) and ( \sqrt{12} = 2\sqrt{3} ) giving us: ( 4\sqrt{3} + 2\sqrt{3} = 6\sqrt{3} )
  2. Simplify ( \sqrt{27} = 3\sqrt{3} )

The expression now is ( \frac{6\sqrt{3}}{3\sqrt{3}} = 2 ).

Step 3

If \( \log 5 = m \), determine the following in terms of m: \( \log 25 \)

96%

101 rated

Answer

Using properties of logarithms:

( \log 25 = \log (5^2) = 2 \log 5 = 2m ).

Step 4

If \( \log 5 = m \), determine the following in terms of m: \( \log_{2} (x + 3) - 3 = - \log_{2} (x - 4) \)

98%

120 rated

Answer

Rearranging gives:

  1. ( \log_{2} (x + 3) + \log_{2} (x - 4) = 3 )
  2. Combine using the product property: ( \log_{2} ((x + 3)(x - 4)) = 3 )
  3. Exponentiate: ( (x + 3)(x - 4) = 2^3 ) ( (x + 3)(x - 4) = 8 )
  4. Expanding gives: ( x^2 - x - 12 = 8 ) leading to: ( x^2 - x - 20 = 0 ).

Step 5

Given complex numbers: \( z_1 = -1 + 3i \) and \( z_2 = \sqrt{2} \text{ cis } 135^{\circ} \): Write down the conjugate of \( z_1 \).

97%

117 rated

Answer

The conjugate of ( z_1 = -1 + 3i ) is ( z_1^* = -1 - 3i ).

Step 6

Given complex numbers: \( z_1 = -1 + 3i \) and \( z_2 = \sqrt{2} \text{ cis } 135^{\circ} \): Express \( z_2 \) in rectangular form.

97%

121 rated

Answer

Using the polar to rectangular conversion:

( z_2 = \sqrt{2} \text{ cis } 135^{\circ} = \sqrt{2} \left( \cos 135^{\circ} + i \sin 135^{\circ} \right) ) ( = \sqrt{2} \left( -\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = -1 + i ).

Step 7

Given complex numbers: \( z_1 = -1 + 3i \) and \( z_2 = \sqrt{2} \text{ cis } 135^{\circ} \): Evaluate \( z_1 \times z_2 \).

96%

114 rated

Answer

Using the obtained rectangular forms:

( z_1 \times z_2 = (-1 + 3i)(-1 + i) )

  1. Expanding gives: ( = 1 - i - 3i + 3(-1) ) ( = 1 - 3 + (3 - 1)i = -2 + 2i ).

Step 8

Solve for x and y if \( x + yi - (1 - i) = 4 + 5i \)

99%

104 rated

Answer

Rearranging gives:

( x + yi = 4 + 5i + 1 - i ) ( = 5 + 4i ).

Thus we have:

  1. ( x = 5 )
  2. ( y = 4 ).

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;