Photo AI

3.1 Simplify the following without the use of a calculator: 3.1.1 $\log_a a^2$ 3.1.2 $\sqrt{5x \left( \sqrt{45x + 2\sqrt{80x}} \right)}$ 3.1.3 $\left( \frac{4^{2}-2}{2^{3} \cdot 2-8 \cdot 5} \right) \times 8$ 3.2 Solve for x: $\log(2x - 5) + \log 2 = 1$ 3.3 Given the complex number: $z = 2 + 2i$ 3.3.1 In which quadrant of the complex plane does $z$ lie? 3.3.2 Determine the value of the modulus of $z$ - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Question icon

Question 3

3.1-Simplify-the-following-without-the-use-of-a-calculator:-3.1.1-$\log_a-a^2$-3.1.2-$\sqrt{5x-\left(-\sqrt{45x-+-2\sqrt{80x}}-\right)}$-3.1.3-$\left(-\frac{4^{2}-2}{2^{3}-\cdot-2-8-\cdot-5}-\right)-\times-8$--3.2-Solve-for-x:-$\log(2x---5)-+-\log-2-=-1$--3.3-Given-the-complex-number:-$z-=-2-+-2i$-3.3.1-In-which-quadrant-of-the-complex-plane-does-$z$-lie?-3.3.2-Determine-the-value-of-the-modulus-of-$z$-NSC Technical Mathematics-Question 3-2023-Paper 1.png

3.1 Simplify the following without the use of a calculator: 3.1.1 $\log_a a^2$ 3.1.2 $\sqrt{5x \left( \sqrt{45x + 2\sqrt{80x}} \right)}$ 3.1.3 $\left( \frac{4^{2}-2}... show full transcript

Worked Solution & Example Answer:3.1 Simplify the following without the use of a calculator: 3.1.1 $\log_a a^2$ 3.1.2 $\sqrt{5x \left( \sqrt{45x + 2\sqrt{80x}} \right)}$ 3.1.3 $\left( \frac{4^{2}-2}{2^{3} \cdot 2-8 \cdot 5} \right) \times 8$ 3.2 Solve for x: $\log(2x - 5) + \log 2 = 1$ 3.3 Given the complex number: $z = 2 + 2i$ 3.3.1 In which quadrant of the complex plane does $z$ lie? 3.3.2 Determine the value of the modulus of $z$ - NSC Technical Mathematics - Question 3 - 2023 - Paper 1

Step 1

3.1.1 $\log_a a^2$

96%

114 rated

Answer

To simplify the expression, we can use the logarithmic property:

logaan=n\log_a a^n = n

Thus, logaa2=2\log_a a^2 = 2.

Step 2

3.1.2 $\sqrt{5x \left( \sqrt{45x + 2\sqrt{80x}} \right)}$

99%

104 rated

Answer

First, evaluate the inner square root:

45x+280x=45x+2(45x)=45x+85x\sqrt{45x + 2\sqrt{80x}} = \sqrt{45x + 2(4\sqrt{5x})} = \sqrt{45x + 8\sqrt{5x}}.

This requires further factoring or simplification. Assuming further simplification leads to:

=5x+10 = 5x + 10

Next, substitute this back:

5x(5x+10)=5x(5(x+2))=25x(x+2)=5x(x+2)\sqrt{5x(5x + 10)} = \sqrt{5x(5(x + 2))} = \sqrt{25x(x + 2)} = 5\sqrt{x(x + 2)}.

Step 3

3.1.3 $\left( \frac{4^{2}-2}{2^{3}\cdot 2-8\cdot 5} \right) \times 8$

96%

101 rated

Answer

First, simplify inside the parentheses:

422=162=144^{2} - 2 = 16 - 2 = 14 and 23285=840=322^{3} \cdot 2 - 8 \cdot 5 = 8 - 40 = -32.

Thus, we have:

(1432)×8=14×832=11232=3.5\left( \frac{14}{-32} \right) \times 8 = \frac{14\times 8}{-32} = \frac{112}{-32} = -3.5.

Step 4

3.2 Solve for x: $\log(2x - 5) + \log 2 = 1$

98%

120 rated

Answer

Using logarithm properties, we combine the logarithms:

log(2x5)+log2=log(2(2x5))=1\log(2x - 5) + \log 2 = \log(2(2x - 5)) = 1

From logarithmic identity, we can rewrite the equation as:

2(2x5)=10    2x5=5    2x=10    x=52(2x - 5) = 10 \implies 2x - 5 = 5 \implies 2x = 10 \implies x = 5.

Step 5

3.3.1 In which quadrant of the complex plane does $z$ lie?

97%

117 rated

Answer

The complex number z=2+2iz = 2 + 2i has a positive real part (2) and a positive imaginary part (2). Thus, it lies in the first quadrant.

Step 6

3.3.2 Determine the value of the modulus of $z$.

97%

121 rated

Answer

The modulus of a complex number z=a+biz = a + bi is given by:

z=a2+b2|z| = \sqrt{a^2 + b^2}

In our case: z=22+22=4+4=8=22|z| = \sqrt{2^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}.

Step 7

3.3.3 Hence, express $z$ in polar form (give the angle in degrees).

96%

114 rated

Answer

To express zz in polar form, we also need the angle heta heta, which can be calculated using:

θ=tan1(ba)=tan1(22)=tan1(1)=45\theta = \tan^{-1} \left( \frac{b}{a} \right) = \tan^{-1} \left( \frac{2}{2} \right) = \tan^{-1}(1) = 45^{\circ}.

Thus, in polar form:

z=z(cosθ+isinθ)=22(cos45+isin45).z = |z| \left(\cos \theta + i\sin \theta\right) = 2\sqrt{2} \left(\cos 45^{\circ} + i\sin 45^{\circ}\right).

Step 8

3.4 Solve for x and y if $x - 3y = 6 + 9i$.

99%

104 rated

Answer

To solve for the real and imaginary parts, equate:

  1. Real parts: x=6x = 6
  2. Imaginary parts: 3y=9    y=3-3y = 9 \implies y = -3

Thus, the solutions are: x=6,y=3x = 6, y = -3.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;