Photo AI

Solve for $x$: 1.1.1 $$ \frac{1}{2} \left(2x - 1\right) = 0 $$ 1.1.2 $$ -x(6 - x) = 4 \quad (round \; off \; to \; TWO \; decimal \; places) $$ 1.1.3 $$ \left(2 - x\right)(x + 5) > 0 $$ Given: $y + x - 10 = 0$ and $x^2 - xy + y^2 = 28$ 1.2.1 Express $y + x - 10 = 0$ in the form $y = mx + c$ - NSC Technical Mathematics - Question 1 - 2023 - Paper 1

Question icon

Question 1

Solve-for-$x$:--1.1.1-$$-\frac{1}{2}-\left(2x---1\right)-=-0-$$--1.1.2-$$--x(6---x)-=-4-\quad-(round-\;-off-\;-to-\;-TWO-\;-decimal-\;-places)-$$--1.1.3-$$-\left(2---x\right)(x-+-5)->-0-$$--Given:-$y-+-x---10-=-0$-and-$x^2---xy-+-y^2-=-28$----1.2.1-Express-$y-+-x---10-=-0$-in-the-form-$y-=-mx-+-c$-NSC Technical Mathematics-Question 1-2023-Paper 1.png

Solve for $x$: 1.1.1 $$ \frac{1}{2} \left(2x - 1\right) = 0 $$ 1.1.2 $$ -x(6 - x) = 4 \quad (round \; off \; to \; TWO \; decimal \; places) $$ 1.1.3 $$ \left(2 -... show full transcript

Worked Solution & Example Answer:Solve for $x$: 1.1.1 $$ \frac{1}{2} \left(2x - 1\right) = 0 $$ 1.1.2 $$ -x(6 - x) = 4 \quad (round \; off \; to \; TWO \; decimal \; places) $$ 1.1.3 $$ \left(2 - x\right)(x + 5) > 0 $$ Given: $y + x - 10 = 0$ and $x^2 - xy + y^2 = 28$ 1.2.1 Express $y + x - 10 = 0$ in the form $y = mx + c$ - NSC Technical Mathematics - Question 1 - 2023 - Paper 1

Step 1

1.1.1 $$ \frac{1}{2} \left(2x - 1\right) = 0 $$

96%

114 rated

Answer

To solve the equation, first multiply both sides by 2 to eliminate the fraction:

212(2x1)=02x1=02 \cdot \frac{1}{2}(2x - 1) = 0 \rightarrow 2x - 1 = 0

Now, solve for xx:

2x=1x=122x = 1 \rightarrow x = \frac{1}{2}. Thus, the solution is:

x=12x = \frac{1}{2}

Step 2

1.1.2 $$ -x(6 - x) = 4 \quad (round \; off \; to \; TWO \; decimal \; places) $$

99%

104 rated

Answer

First, rearrange the equation:

x(6x)=4x26x4=0-x(6 - x) = 4 \rightarrow x^2 - 6x - 4 = 0

Using the quadratic formula:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a=1a = 1, b=6b = -6, and c=4c = -4:

b24ac=(6)24(1)(4)=36+16=52b^2 - 4ac = (-6)^2 - 4(1)(-4) = 36 + 16 = 52

Thus,

x=6±522=6±2132=3±13x = \frac{6 \pm \sqrt{52}}{2} = \frac{6 \pm 2\sqrt{13}}{2} = 3 \pm \sqrt{13}

Calculating the approximate values, we find:

x6.61  and  x0.61x \approx 6.61 \; \text{and} \; x \approx -0.61

Rounded values are x6.61x \approx 6.61.

Step 3

1.1.3 $$ \left(2 - x\right)(x + 5) > 0 $$

96%

101 rated

Answer

To solve the inequality, find the critical values:

Setting each factor to zero gives: 2x=0x=22 - x = 0 \rightarrow x = 2 x+5=0x=5x + 5 = 0 \rightarrow x = -5

Next, we analyze the intervals based on these critical values:

  1. If x<5x < -5: both factors are positive.
  2. If 5<x<2-5 < x < 2: the first factor is positive while the second is negative.
  3. If x>2x > 2: both factors are positive.

Thus, the solution is: x<5  or  x>2x < -5 \; \text{or} \; x > 2

Step 4

1.2.1 Express $y + x - 10 = 0$ in the form $y = mx + c$.

98%

120 rated

Answer

Rearranging the equation gives: y=x+10y = -x + 10

This is in the slope-intercept form y=mx+cy = mx + c, where m=1m = -1 and c=10c = 10.

Step 5

1.2.2 Hence, or otherwise, solve for $x$ and $y$.

97%

117 rated

Answer

From the previous part, we have: y=x+10y = -x + 10

Substituting this into the second equation: x2x(x+10)+(x+10)2=28x^2 - x(-x + 10) + (-x + 10)^2 = 28

Simplifying: x2+x210x+x220x+100=283x230x+72=0x^2 + x^2 - 10x + x^2 - 20x + 100 = 28 \rightarrow 3x^2 - 30x + 72 = 0

Using the quadratic formula: x=30±(30)2437223x = \frac{30 \pm \sqrt{(-30)^2 - 4 \cdot 3 \cdot 72}}{2 \cdot 3}

This leads to: x=6  or  x=4x = 6 \; \text{or} \; x = 4

Substituting back to find yy: For x=6x = 6: y=4y = 4. For x=4x = 4: y=6y = 6.

Thus, the solutions are (6,4)(6, 4) and (4,6)(4, 6).

Step 6

1.3.1 Make $A$ the subject of the formula.

97%

121 rated

Answer

The given pressure formula is: P=FAP = \frac{F}{A}

To make AA the subject, rearrange the formula: A=FPA = \frac{F}{P}

Step 7

1.3.2 Hence, or otherwise, calculate the value of $A$ if $P = 25 984 480.5 \, Pa$ and $F = 25 \times 10^3 \, N$. Express the value in scientific notation.

96%

114 rated

Answer

Substitute the values into the rearranged formula: A=25×10325984480.5A = \frac{25 \times 10^3}{25 984 480.5}

Calculating this, we have: A0.000962  m29.62×104  m2A \approx 0.000962 \; m^2 \approx 9.62 \times 10^{-4} \; m^2

Step 8

1.4.1 Determine the value of $A - B$ (in binary form).

99%

104 rated

Answer

The binary values are: A=1000111B=100111A = 1000111 \quad B = 100111

Performing the subtraction in binary:

  1000111
- 0100111
----------
   0011000

Thus, AB=0011000A - B = 0011000.

Step 9

1.4.2 Hence, convert the answer to QUESTION 1.4.1 to decimal form.

96%

101 rated

Answer

The binary result 00110000011000 converts to decimal as follows:

23+22=8+4=122^3 + 2^2 = 8 + 4 = 12

Thus, the decimal form is 1212.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;