Photo AI

1.1 Los op vir x: 1.1.1 (7 - 3x)(x - 8 - x) = 0 1.1.2 3x² - 4x = \frac{1}{3} (korrek tot TWEE desimale plekke) 1.1.3 -x² + 16 > 0 1.2 Los op vir x en y indien: x = y - 1 en x + 2xy + y² = 9 1.3 Die diagram hieronder toon 'n RCL-stroombaan wat vir spanningsverhoging gebruik word - NSC Technical Mathematics - Question 1 - 2023 - Paper 1

Question icon

Question 1

1.1-Los-op-vir-x:--1.1.1-(7---3x)(x---8---x)-=-0--1.1.2-3x²---4x-=-\frac{1}{3}-(korrek-tot-TWEE-desimale-plekke)--1.1.3--x²-+-16->-0--1.2-Los-op-vir-x-en-y-indien:--x-=-y---1-en-x-+-2xy-+-y²-=-9--1.3-Die-diagram-hieronder-toon-'n-RCL-stroombaan-wat-vir-spanningsverhoging-gebruik-word-NSC Technical Mathematics-Question 1-2023-Paper 1.png

1.1 Los op vir x: 1.1.1 (7 - 3x)(x - 8 - x) = 0 1.1.2 3x² - 4x = \frac{1}{3} (korrek tot TWEE desimale plekke) 1.1.3 -x² + 16 > 0 1.2 Los op vir x en y indien: ... show full transcript

Worked Solution & Example Answer:1.1 Los op vir x: 1.1.1 (7 - 3x)(x - 8 - x) = 0 1.1.2 3x² - 4x = \frac{1}{3} (korrek tot TWEE desimale plekke) 1.1.3 -x² + 16 > 0 1.2 Los op vir x en y indien: x = y - 1 en x + 2xy + y² = 9 1.3 Die diagram hieronder toon 'n RCL-stroombaan wat vir spanningsverhoging gebruik word - NSC Technical Mathematics - Question 1 - 2023 - Paper 1

Step 1

1.1.1 (7 - 3x)(x - 8 - x) = 0

96%

114 rated

Answer

To solve the equation, first rewrite it:

73x=03x=7x=732.337 - 3x = 0 \rightarrow 3x = 7 \rightarrow x = \frac{7}{3} \approx 2.33

Then, solving the second factor:

x8x=08=0x - 8 - x = 0 \rightarrow -8 = 0

This is not valid, so we conclude that

x=73x = \frac{7}{3}

Step 2

1.1.2 3x² - 4x = \frac{1}{3} (korrek tot TWEE desimale plekke)

99%

104 rated

Answer

First, rearrange the equation:

3x24x13=03x^2 - 4x - \frac{1}{3} = 0

Multiply through by 3 to eliminate the fraction:

9x212x1=09x^2 - 12x - 1 = 0

Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, we find:

x=12±144+3618=12±18018x = \frac{12 \pm \sqrt{144 + 36}}{18} = \frac{12 \pm \sqrt{180}}{18}

Calculating further leads to:

x=12±6518=2±53x = \frac{12 \pm 6 \sqrt{5}}{18} = \frac{2 \pm \sqrt{5}}{3}

The approximate values give us:

x1.41 or x0.08x \approx 1.41 \text{ or } x \approx -0.08

Step 3

1.1.3 -x² + 16 > 0

96%

101 rated

Answer

Rearranging gives:

x2<16x^2 < 16

Therefore,

4<x<4-4 < x < 4.

This indicates that the solution for x must be in the range of (4,4)(-4, 4).

Step 4

1.2 Los op vir x en y indien: x = y - 1 en x + 2xy + y² = 9

98%

120 rated

Answer

From the first equation, solving for y:

y=x+1y = x + 1.

Substituting into the second equation gives:

x+2x(x+1)+(x+1)2=9x + 2x(x+1) + (x+1)^2 = 9

This simplifies to:

x+2x2+2x+x2+2x+1=9x + 2x^2 + 2x + x^2 + 2x + 1 = 9

Combine like terms:

3x2+5x8=03x^2 + 5x - 8 = 0

Using the quadratic formula:

x=5±25+9623=5±116x = \frac{-5 \pm \sqrt{25 + 96}}{2 \cdot 3} = \frac{-5 \pm 11}{6}

Thus,

x1extorx2.67x \approx 1 ext{ or } x \approx -2.67

Then substitute these x-values back into y=x+1y = x + 1 to find the corresponding y-values:

Step 5

1.3.1 Maak $L$ die onderwerp van die formule.

97%

117 rated

Answer

Starting with:

fr=12πLCf_r = \frac{1}{2\pi \sqrt{LC}}

Rearranging to make L the subject:

LC=12πfr\sqrt{LC} = \frac{1}{2\pi f_r}

By squaring both sides:

LC=(12πfr)2LC = \left(\frac{1}{2\pi f_r}\right)^2

Thus,

L=1C(2πfr)2L = \frac{1}{C(2\pi f_r)^2}

Step 6

1.3.2 Bereken vervolgens die numeriese waarde van L indien: C = 0,65 \times 10^{-6} F en f_r = 1,59 Hz

97%

121 rated

Answer

Substituting the values gives:

L=10.65×106×(2π1.59)2L = \frac{1}{0.65 \times 10^{-6} \times (2\pi \cdot 1.59)^2}

Calculating this results in:

L15414.61HL \approx 15414.61 H.

Step 7

1.4 Druk 24 uit in binêre getal.

96%

114 rated

Answer

The binary representation of 24 is:

24=11000224 = 11000_2.

Step 8

1.5 Evalueer 144 + 110, en laat jou antwoord as 'n desimale getal.

99%

104 rated

Answer

Calculating this simply:

144+110=254144 + 110 = 254.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;