3.1 Vereenvoudig die volgende SONDERS om 'n sakrekenaar te gebruik:
3.1.1 $log 3 + log 27$
$log 81 - log 9$
3.1.2 \[ \frac{2^{\sqrt{32}} + 2^{\sqrt{2}}}{2^{\sqrt{50}}} \]
3.2 Los op vir $x$: $log_{32} + log 4 - log_{16} = log_{125}$
3.3 Twee wisselstroombane, wat in serie verbind is, het impedansies $Z_1 = 4 + 5i$ en $Z_2 = 4 - 4i$ - NSC Technical Mathematics - Question 3 - 2020 - Paper 1
Question 3
3.1 Vereenvoudig die volgende SONDERS om 'n sakrekenaar te gebruik:
3.1.1 $log 3 + log 27$
$log 81 - log 9$
3.1.2 \[ \frac{2^{\sqrt{32}} + 2^{\sqrt{2}}}{2^{\sqrt{... show full transcript
Worked Solution & Example Answer:3.1 Vereenvoudig die volgende SONDERS om 'n sakrekenaar te gebruik:
3.1.1 $log 3 + log 27$
$log 81 - log 9$
3.1.2 \[ \frac{2^{\sqrt{32}} + 2^{\sqrt{2}}}{2^{\sqrt{50}}} \]
3.2 Los op vir $x$: $log_{32} + log 4 - log_{16} = log_{125}$
3.3 Twee wisselstroombane, wat in serie verbind is, het impedansies $Z_1 = 4 + 5i$ en $Z_2 = 4 - 4i$ - NSC Technical Mathematics - Question 3 - 2020 - Paper 1
Step 1
3.1.1 $log 3 + log 27$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using the property of logarithms:
loga+logb=log(ab)
we have:
log3+log27=log(3⋅27)=log81
For the second part:
Using the property of logarithms:
loga−logb=log(ba)
we have:
log81−log9=log(981)=log9=2
Step 2
3.1.2
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
We simplify the expression:
[ \frac{2^{\sqrt{32}} + 2^{\sqrt{2}}}{2^{\sqrt{50}}} = \frac{2^{2 \cdot 4} + 2^{\sqrt{2}}}{2^{\sqrt{50}}} = \frac{2^{4} + 2^{\sqrt{2}}}{2^{\sqrt{50}}} = 1]
Step 3
3.2 Los op vir $x$: $log_{32} + log 4 - log_{16} = log_{125}$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using logarithm properties:
log32(25)+log(22)−log(24)=log(125)
This can further be simplified using change of base:
log(2)log(32)+log(4)−log(16)=log(125)
After simplification, we find that x=2.
Step 4
3.3.1 Bereken die totale impedansie $Z_T$
98%
120 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the total impedance:
ZT=Z1+Z2=(4+5i)+(4−4i)=8+i
Step 5
3.3.2 Druk vervolgens die totale impedansie in die vorm $Z_T = r(cos θ + isin θ)$
97%
117 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To express the total impedance in polar form, we calculate the modulus:
r=∣ZT∣=82+12=64+1=65
Next, we find the angle:
θ=tan−1(81)
Finally, we express it as:
ZT=r(cosθ+isinθ)
Step 6
3.4 Los op vir $k$ en indien $k = 6 + 4(i - 9) + 2mi$.
97%
121 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
First, simplify the expression:
k=6+4(i−9)+2mi=6+4i−36+2mi=−30+(4+2m)i
Setting the real part and imaginary part:
Real part: −30
Imaginary part: 4+2m