Photo AI

Die diagram hieronder toon 'n koordinate vierhoek TSQR - NSC Technical Mathematics - Question 6 - 2024 - Paper 2

Question icon

Question 6

Die-diagram-hieronder-toon-'n-koordinate-vierhoek-TSQR-NSC Technical Mathematics-Question 6-2024-Paper 2.png

Die diagram hieronder toon 'n koordinate vierhoek TSQR. TS = 22 m en TR = 18 m ∠T = 67° en ∠R₁ = 42,5° Bepaal: 6.1.1 Die lengte van SR 6.1.2 Die grootte van ∠M ... show full transcript

Worked Solution & Example Answer:Die diagram hieronder toon 'n koordinate vierhoek TSQR - NSC Technical Mathematics - Question 6 - 2024 - Paper 2

Step 1

6.1.1 Die lengte van SR

96%

114 rated

Answer

To find the length of segment SR, we can use the cosine rule. The formula is given by:

SR2=TS2+TR22imesTSimesTRimesextcos(heta)SR^2 = TS^2 + TR^2 - 2 imes TS imes TR imes ext{cos}( heta)

Here, TS = 22 m, TR = 18 m, and heta=67° heta = 67°. Substituting these values:

SR2=(22)2+(18)22imes(22)imes(18)imesextcos(67°)SR^2 = (22)^2 + (18)^2 - 2 imes (22) imes (18) imes ext{cos}(67°)

Calculating the right-hand side yields:

SR2=484+3242imes22imes18imes0.3907498.5409462SR^2 = 484 + 324 - 2 imes 22 imes 18 imes 0.3907 ≈ 498.5409462

Thus, taking the square root gives:

SR22.33mSR ≈ 22.33 m

Step 2

6.1.2 Die grootte van ∠M

99%

104 rated

Answer

To find the angle ∠M, we use the fact that the sum of angles in a triangle is 180°. Therefore:

M=180°TR1M = 180° - ∠T - ∠R₁

Substituting the known values:

M=180°67°42.5°=70.5°M = 180° - 67° - 42.5° = 70.5°

Step 3

6.2.1 Voltooi die sinusreël:

96%

101 rated

Answer

Using the sinus rule for triangle ΔSMR:

SMsinR1=SRsinM\frac{SM}{\sin R₁} = \frac{SR}{\sin M}

Step 4

6.2.2 Bepaal vervolgens die lengte van SM.

98%

120 rated

Answer

To find the length of SM, we can rearrange the previous equation:

SM=SRsinR1sinMSM = \frac{SR \cdot \sin R₁}{\sin M}

Substituting the known values:

SM=22.33sin(42.5°)sin(70.5°)SM = \frac{22.33 \cdot \sin(42.5°)}{\sin(70.5°)}

Calculating this gives:

SM16.39mSM ≈ 16.39 m

Step 5

6.3 Die oppervlakte van ΔSMR moet bereken word.

97%

117 rated

Answer

To calculate the area of triangle ΔSMR, we can use the formula:

Area=12SRSMsin(M)\text{Area} = \frac{1}{2} \cdot SR \cdot SM \cdot \sin(∠M)

Substituting the known values:

Area=1222.3316.39sin(70.5°)\text{Area} = \frac{1}{2} \cdot 22.33 \cdot 16.39 \cdot \sin(70.5°)

Calculating this gives an approximate area, and to find the number of bags needed:

Number of bags=Area15.178\text{Number of bags} = \frac{\text{Area}}{15.178}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;