Photo AI

Die grafieke hieronder verteenwoordig die funksies gedefinieer deur $f(x) = ext{cos} heta$ en $g(x) = ext{tan} x$ vir $x ext{ in } [0^{ extcirc}; 180^{ extcirc}]$ - NSC Technical Mathematics - Question 5 - 2023 - Paper 2

Question icon

Question 5

Die-grafieke-hieronder-verteenwoordig-die-funksies-gedefinieer-deur-$f(x)-=--ext{cos}--heta$-en-$g(x)-=--ext{tan}-x$-vir-$x--ext{-in-}-[0^{-extcirc};-180^{-extcirc}]$-NSC Technical Mathematics-Question 5-2023-Paper 2.png

Die grafieke hieronder verteenwoordig die funksies gedefinieer deur $f(x) = ext{cos} heta$ en $g(x) = ext{tan} x$ vir $x ext{ in } [0^{ extcirc}; 180^{ extcirc}]... show full transcript

Worked Solution & Example Answer:Die grafieke hieronder verteenwoordig die funksies gedefinieer deur $f(x) = ext{cos} heta$ en $g(x) = ext{tan} x$ vir $x ext{ in } [0^{ extcirc}; 180^{ extcirc}]$ - NSC Technical Mathematics - Question 5 - 2023 - Paper 2

Step 1

Die waarde van $a$

96%

114 rated

Answer

Die waarde van aa in die grafiek is 11.

Step 2

Die periode van $g$

99%

104 rated

Answer

Die periode van die tan-funksie is 180extcirc180^{ extcirc}.

Step 3

Die waarde van $x$ waarvoor $ ext{tan} x + 1 = 0$

96%

101 rated

Answer

Om exttanx+1=0 ext{tan} x + 1 = 0 op te los, stel ons exttanx=1 ext{tan} x = -1. Die oplossing is x=135extcircx = 135^{ extcirc}.

Step 4

Die waardeverzameling van $g$

98%

120 rated

Answer

Die waardeverzameling van gg is (- rac{ ext{onbounded}}{2}, rac{ ext{onbounded}}{2}).

Step 5

Die waarde(s) van $x$ waarvoor $f(x) < 0$

97%

117 rated

Answer

Die waarde(s) van xx waarvoor f(x)<0f(x) < 0 is in die interval (90extcirc,180extcirc)(90^{ extcirc}, 180^{ extcirc}).

Step 6

Bepaal $g(180^{ extcirc}) - f(180^{ extcirc})$

97%

121 rated

Answer

Gegee dat g(180extcirc)=exttan(180extcirc)=0g(180^{ extcirc}) = ext{tan}(180^{ extcirc}) = 0 en f(180extcirc)=extcos(180extcirc)=1f(180^{ extcirc}) = ext{cos}(180^{ extcirc}) = -1, dan is:

g(180^{ extcirc}) - f(180^{ extcirc}) = 0 - (-1) = 1.

Step 7

Skryf die waarde(s) van $x$ neer waarvoor $f$ dalend is

96%

114 rated

Answer

Die funksie ff is dalend wanneer 90extcirc<x<135extcirc90^{ extcirc} < x < 135^{ extcirc}.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;