Photo AI

Simplify (showing ALL calculations) the following without the use of a calculator: 3.1.1 \( \left( \frac{2a^{3}}{3} \right)^{3} \) 3.1.2 \( \log_{g} p + \log_{1} \) 3.1.3 \( \frac{\sqrt{48} - \sqrt{-12}}{2\sqrt{75}} \) - NSC Technical Mathematics - Question 3 - 2018 - Paper 1

Question icon

Question 3

Simplify-(showing-ALL-calculations)-the-following-without-the-use-of-a-calculator:-3.1.1-\(-\left(-\frac{2a^{3}}{3}-\right)^{3}-\)-3.1.2-\(-\log_{g}-p-+-\log_{1}-\)-3.1.3-\(-\frac{\sqrt{48}---\sqrt{-12}}{2\sqrt{75}}-\)-NSC Technical Mathematics-Question 3-2018-Paper 1.png

Simplify (showing ALL calculations) the following without the use of a calculator: 3.1.1 \( \left( \frac{2a^{3}}{3} \right)^{3} \) 3.1.2 \( \log_{g} p + \log_{1} \) ... show full transcript

Worked Solution & Example Answer:Simplify (showing ALL calculations) the following without the use of a calculator: 3.1.1 \( \left( \frac{2a^{3}}{3} \right)^{3} \) 3.1.2 \( \log_{g} p + \log_{1} \) 3.1.3 \( \frac{\sqrt{48} - \sqrt{-12}}{2\sqrt{75}} \) - NSC Technical Mathematics - Question 3 - 2018 - Paper 1

Step 1

3.1.1 Simplify \( \left( \frac{2a^{3}}{3} \right)^{3} \)

96%

114 rated

Answer

To simplify ( \left( \frac{2a^{3}}{3} \right)^{3} ), we apply the exponent property:

(2a33)3=(23)(a3)333=8a927\left( \frac{2a^{3}}{3} \right)^{3} = \frac{(2^{3})(a^{3})^{3}}{3^{3}} = \frac{8a^{9}}{27}

Thus, the result is ( \frac{8a^{9}}{27} ).

Step 2

3.1.2 Simplify \( \log_{g} p + \log_{1} \)

99%

104 rated

Answer

Using the log property, we know that ( \log_{1} = 0 ), since any number to the power of 0 is 1.

Therefore, we can simplify:

loggp+log1=loggp+0=loggp\log_{g} p + \log_{1} = \log_{g} p + 0 = \log_{g} p

Step 3

3.1.3 Simplify \( \frac{\sqrt{48} - \sqrt{-12}}{2\sqrt{75}} \)

96%

101 rated

Answer

First, we simplify the numerator:

4812=16312i=4323i\sqrt{48} - \sqrt{-12} = \sqrt{16 \cdot 3} - \sqrt{12} i = 4\sqrt{3} - 2\sqrt{3} i

Now simplifying the denominator:

275=2253=2(53)=1032\sqrt{75} = 2\sqrt{25 \cdot 3} = 2(5\sqrt{3}) = 10\sqrt{3}

Then the whole expression becomes:

4323i103=42i10=2i5\frac{4\sqrt{3} - 2\sqrt{3}i}{10\sqrt{3}} = \frac{4 - 2i}{10} = \frac{2 - i}{5}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;