Photo AI

Vereenvoudig (toon ALLE berekeninge) die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $igg( 2a^{3} \bigg)^{3}$ 3.1.2 $\log_{p} + \log_{1}$ 3.1.3 $\frac{\sqrt{48} - \sqrt{12}}{2\sqrt{75}}$ - NSC Technical Mathematics - Question 3 - 2018 - Paper 1

Question icon

Question 3

Vereenvoudig-(toon-ALLE-berekeninge)-die-volgende-sonder-om-'n-sakrekenaar-te-gebruik:--3.1.1-$igg(-2a^{3}-\bigg)^{3}$--3.1.2-$\log_{p}-+-\log_{1}$--3.1.3-$\frac{\sqrt{48}---\sqrt{12}}{2\sqrt{75}}$-NSC Technical Mathematics-Question 3-2018-Paper 1.png

Vereenvoudig (toon ALLE berekeninge) die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $igg( 2a^{3} \bigg)^{3}$ 3.1.2 $\log_{p} + \log_{1}$ 3.1.3 $\frac{\s... show full transcript

Worked Solution & Example Answer:Vereenvoudig (toon ALLE berekeninge) die volgende sonder om 'n sakrekenaar te gebruik: 3.1.1 $igg( 2a^{3} \bigg)^{3}$ 3.1.2 $\log_{p} + \log_{1}$ 3.1.3 $\frac{\sqrt{48} - \sqrt{12}}{2\sqrt{75}}$ - NSC Technical Mathematics - Question 3 - 2018 - Paper 1

Step 1

3.1.1 Vereenvoudig $igg( 2a^{3} \bigg)^{3}$

96%

114 rated

Answer

To simplify the expression, we will use the power of a product property:

(2a3)3=23a33=8a9\bigg( 2a^{3} \bigg)^{3} = 2^{3} a^{3 \cdot 3} = 8a^{9}

Step 2

3.1.2 $\log_{p} + \log_{1}$

99%

104 rated

Answer

Using the properties of logarithms, we know that:

log1=0\log_{1} = 0

Thus, the expression simplifies to:

logp+0=logp\log_{p} + 0 = \log_{p}

Step 3

3.1.3 $\frac{\sqrt{48} - \sqrt{12}}{2\sqrt{75}}$

96%

101 rated

Answer

First, we simplify the terms under the square root:

48=163=43\sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3} 12=43=23\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}

So, we have:

4812=4323=23\sqrt{48} - \sqrt{12} = 4\sqrt{3} - 2\sqrt{3} = 2\sqrt{3}

Next, we address the denominator:

75=253=53\sqrt{75} = \sqrt{25 \cdot 3} = 5\sqrt{3}

Now substituting back in, our expression is:

23253=23103=210=15\frac{2\sqrt{3}}{2 \cdot 5\sqrt{3}} = \frac{2\sqrt{3}}{10\sqrt{3}} = \frac{2}{10} = \frac{1}{5}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;