Photo AI

'n Maatskappy is gekontrakteer om regte silindervormige blikkies te vervaardig om sousbone te verpakk - NSC Technical Mathematics - Question 8 - 2023 - Paper 1

Question icon

Question 8

'n-Maatskappy-is-gekontrakteer-om-regte-silindervormige-blikkies-te-vervaardig-om-sousbone-te-verpakk-NSC Technical Mathematics-Question 8-2023-Paper 1.png

'n Maatskappy is gekontrakteer om regte silindervormige blikkies te vervaardig om sousbone te verpakk. Die volume van 'n blikkie is 350 mℓ. Die diagram hieronder t... show full transcript

Worked Solution & Example Answer:'n Maatskappy is gekontrakteer om regte silindervormige blikkies te vervaardig om sousbone te verpakk - NSC Technical Mathematics - Question 8 - 2023 - Paper 1

Step 1

8.1 Toon dat die hoogte as $h = \frac{350}{\pi r^{2}}$ uitgedruk kan word.

96%

114 rated

Answer

To show this, we start with the formula for volume of the cylinder:

V=πr2hV = \pi r^{2} h

Substituting the given volume:

350=πr2h350 = \pi r^{2} h

We can solve for height hh:

h=350πr2h = \frac{350}{\pi r^{2}}

Step 2

8.2 Toon vervolgens aan dat die totale buite-oppervlakte ($A$) uitgedruk kan word as: $A(r) = 2 a^{2} + 2 u r \frac{350}{\nu r^{2}}$

99%

104 rated

Answer

First, we express the total surface area AA as follows:

A(r)=2πr2+2πrhA(r) = 2\pi r^{2} + 2\pi r h

Substituting the expression found for hh:

A(r)=2πr2+2πr(350πr2)A(r) = 2\pi r^{2} + 2\pi r \left(\frac{350}{\pi r^{2}}\right)

Simplifying gives:

A(r)=2πr2+700rA(r) = 2\pi r^{2} + \frac{700}{r}.

Step 3

8.3 Bepaal vervolgens die afmetings van die blikkie indien die totale buite-oppervlakte 'n minimum moet wees.

96%

101 rated

Answer

To find the dimensions when the total surface area A(r)A(r) is at its minimum, we need to take the derivative of A(r)A(r):

A(r)=4πr700r2A'(r) = 4\pi r - \frac{700}{r^{2}}

Setting the derivative to zero for critical points:

4πr700r2=04\pi r - \frac{700}{r^{2}} = 0

Solving for rr gives:

4πr3=7004\pi r^{3} = 700

r3=7004π    r=7004π33.82 cmr^{3} = \frac{700}{4\pi} \implies r = \sqrt[3]{\frac{700}{4\pi}} \approx 3.82 \text{ cm}

Then substituting to find hh:

h=350π(3.82)27.63 cmh = \frac{350}{\pi (3.82)^{2}} \approx 7.63 \text{ cm}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;