Die diagram hieronder toon \( \triangle PQR \) met \( ST \parallel QR \) - NSC Technical Mathematics - Question 9 - 2023 - Paper 2
Question 9
Die diagram hieronder toon \( \triangle PQR \) met \( ST \parallel QR \).
\( PS = 8 \: cm, SQ = 3 \: cm \) en \( QR = 21 \: cm. \)
1. Gee die korrekte rede vir die... show full transcript
Worked Solution & Example Answer:Die diagram hieronder toon \( \triangle PQR \) met \( ST \parallel QR \) - NSC Technical Mathematics - Question 9 - 2023 - Paper 2
Step 1
Gee die korrekte rede vir die bewering:
PT = TR of...
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die rede vir die bewering is dat die segmente in ( \triangle PQR ) in verhouding staan omdat die lynsegment ( ST ) parallel is aan ( QR ). Dit gevolg deur die basis hoeke se eienskappe van parallelle lyn. Daarom, ( PT:TR = PS:SQ ).
Step 2
Bereken vervolgens die lengte van PT.
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Die verhouding is gegee as ( PS:SQ = 8:3 ). Laat ( PT = x ) en ( TR = y ). Aangesien die totale lengte van ( QR = 21 : cm ) het jy die vergelyking ( x + y = 21 ).
As ( \frac{PT}{TR} = \frac{PS}{SQ} ):
[ \frac{x}{y} = \frac{8}{3} ]
Dus kan ons ( y ) uitdruk as ( y = \frac{3}{8}x ). Substituer dit in die eerste vergelyking:
[ x + \frac{3}{8}x = 21 ]
Hieruit resulterend in:
[ \frac{11}{8}x = 21 ]
Dus,
[ x = \frac{21 \times 8}{11} \approx 15.27 : cm. ]
Dus: ( PT \approx 15.27 : cm. )
Step 3
Voltooi die bewering en gee die korrekte rede:
ST = QR of...
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Aangesien ( ST \parallel QR ), is die verhouding van die lengtes van die lynsegmente: ( \frac{ST}{QR} = \frac{PS}{SQ}. )