Photo AI

Die lengte van SR SR = TS² + TR² - 2 * TS * TR * cos(67°) SR = (22)² + (18)² - 2(22)(18)cos(67°) SR = 498.5409462 SR = 22,33 m Die grootte van M M̂ = 180° - 67° - 113° - NSC Technical Mathematics - Question 6 - 2024 - Paper 2

Question icon

Question 6

Die-lengte-van-SR--SR-=-TS²-+-TR²---2-*-TS-*-TR-*-cos(67°)--SR-=-(22)²-+-(18)²---2(22)(18)cos(67°)--SR-=-498.5409462--SR-=-22,33-m---Die-grootte-van-M--M̂-=-180°---67°---113°-NSC Technical Mathematics-Question 6-2024-Paper 2.png

Die lengte van SR SR = TS² + TR² - 2 * TS * TR * cos(67°) SR = (22)² + (18)² - 2(22)(18)cos(67°) SR = 498.5409462 SR = 22,33 m Die grootte van M M̂ = 180° - 6... show full transcript

Worked Solution & Example Answer:Die lengte van SR SR = TS² + TR² - 2 * TS * TR * cos(67°) SR = (22)² + (18)² - 2(22)(18)cos(67°) SR = 498.5409462 SR = 22,33 m Die grootte van M M̂ = 180° - 67° - 113° - NSC Technical Mathematics - Question 6 - 2024 - Paper 2

Step 1

6.1.1 Die lengte van SR

96%

114 rated

Answer

To determine the length of SR, we'll apply the cosine rule:

SR2=TS2+TR22imesTSimesTRimesextcos(67°)SR^2 = TS^2 + TR^2 - 2 imes TS imes TR imes ext{cos}(67°)

Substituting the given values:

SR2=(22)2+(18)22(22)(18)imesextcos(67°)SR^2 = (22)^2 + (18)^2 - 2(22)(18) imes ext{cos}(67°)

Calculating this, we get:

SR2=484+3242(396)imes0.3907 ext(usingcos(67°)=0.3907)SR^2 = 484 + 324 - 2(396) imes 0.3907 \ ext{ (using cos(67°) = 0.3907)}

Which simplifies to:

SR2extcalculatesapproximatelyto498.5409462SR^2 ext{ calculates approximately to } 498.5409462

Thus, we find:

SRextisapproximately22.33mSR ext{ is approximately } 22.33 m

Step 2

6.1.2 Die grootte van M

99%

104 rated

Answer

We find the angle M̂ by applying the formula:

M^=180°67°113°M̂ = 180° - 67° - 113°

Thus:

M^=113°M̂ = 113°

Step 3

6.2.1 Voltooi die sinussreël: SM/SR

96%

101 rated

Answer

Using the sine rule, we have:

SMsin(R^)=SRsin(M^)\frac{SM}{\text{sin}(R̂)} = \frac{SR}{\text{sin}(M̂)}

This can be rearranged as:

SM=SRsin(R^)sin(M^)SM = \frac{SR \cdot \text{sin}(R̂)}{\text{sin}(M̂)}

Substituting values:

SM=22.33sin(42.5°)sin(113°)SM = \frac{22.33 \cdot \text{sin}(42.5°)}{\text{sin}(113°)}

Step 4

6.2.2 Bepaal vervolgens die lengte van SM

98%

120 rated

Answer

Continuing from the previous calculations, we need:

SM=22.330.67450.8387 (values for sin(42.5°) and sin(113°))SM = \frac{22.33 \cdot 0.6745}{0.8387} \text{ (values for sin(42.5°) and sin(113°))}

Carrying out this computation gives us:

SM16.39mSM \approx 16.39 m

Step 5

6.3 Die oppervlakte van ΔSMR moet bemes word.

97%

117 rated

Answer

To calculate the area of triangle ΔSMR, we can use:

Area=12×SR×SM×sin(R^)\text{Area} = \frac{1}{2} \times SR \times SM \times \text{sin}(R̂)

Substituting the known values:

Area=12×22.33×16.39×sin(42.5°)\text{Area} = \frac{1}{2} \times 22.33 \times 16.39 \times \text{sin}(42.5°)

Calculating this gives us:

Area15.178 square meters\text{Area} \approx 15.178 \text{ square meters}

Now, to find the number of bags required:

We know that each bag covers 15.178 m². Thus:

Bags required=15.1787.52bags\text{Bags required} = \frac{15.178}{7.5} \approx 2 bags

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;