Photo AI

4.1 Simplify: 4.1.1 cot² 2β - cosec² 2β 4.1.2 tan² A - cosec² A - cos 2π 4.2 Given the identity: cosec(180° + θ) · sin(360° - θ) - [sin(180° + θ)] sec 60° = cos θ 4.2.1 Write down the numerical value of sec 60° - NSC Technical Mathematics - Question 4 - 2019 - Paper 2

Question icon

Question 4

4.1-Simplify:--4.1.1-cot²-2β---cosec²-2β--4.1.2-tan²-A---cosec²-A---cos-2π--4.2-Given-the-identity:--cosec(180°-+-θ)-·-sin(360°---θ)---[sin(180°-+-θ)]-sec-60°-=-cos-θ--4.2.1-Write-down-the-numerical-value-of-sec-60°-NSC Technical Mathematics-Question 4-2019-Paper 2.png

4.1 Simplify: 4.1.1 cot² 2β - cosec² 2β 4.1.2 tan² A - cosec² A - cos 2π 4.2 Given the identity: cosec(180° + θ) · sin(360° - θ) - [sin(180° + θ)] sec 60° = cos ... show full transcript

Worked Solution & Example Answer:4.1 Simplify: 4.1.1 cot² 2β - cosec² 2β 4.1.2 tan² A - cosec² A - cos 2π 4.2 Given the identity: cosec(180° + θ) · sin(360° - θ) - [sin(180° + θ)] sec 60° = cos θ 4.2.1 Write down the numerical value of sec 60° - NSC Technical Mathematics - Question 4 - 2019 - Paper 2

Step 1

4.1.1 cot² 2β - cosec² 2β

96%

114 rated

Answer

To simplify the expression, we recognize that:

ext{cot}^2 x = rac{1}{ ext{cosec}^2 x} - 1

Thus,

ext{cot}^2 2eta - ext{cosec}^2 2eta = rac{1}{ ext{cosec}^2 2eta} - 1 - ext{cosec}^2 2eta

This leads us to:

=1= -1

Step 2

4.1.2 tan² A - cosec² A - cos 2π

99%

104 rated

Answer

We start with the equation:

an2Aextcosec2Aextcos2heta an^2 A - ext{cosec}^2 A - ext{cos} 2 heta

Using the identity, extcos2heta=12extsin2heta ext{cos} 2 heta = 1 - 2 ext{sin}^2 heta is relevant here:

an^2 A = rac{ ext{sin}^2 A}{ ext{cos}^2 A} \ ext{cosec}^2 A = rac{1}{ ext{sin}^2 A}

Substituting these values lets us simplify to:

rac{ ext{sin}^2 A}{ ext{cos}^2 A} - rac{1}{ ext{sin}^2 A} - 1

Ultimately, this simplifies to:

an2A an^2 A

Step 3

4.2.1 Write down the numerical value of sec 60°.

96%

101 rated

Answer

The numerical value of sec 60° can be derived from:

ext{sec} 60° = rac{1}{ ext{cos} 60°}

Since ext{cos} 60° = rac{1}{2}, we have:

ext{sec} 60° = rac{1}{ rac{1}{2}} = 2

Step 4

4.2.2 Hence, prove the identity.

98%

120 rated

Answer

To prove the identity:

Starting with:

extL.H.S=extcosec(180°+θ)extsin(360°θ)[extsin(180°+θ)]extsec60° ext{L.H.S} = ext{cosec}(180° + θ) · ext{sin}(360° - θ) - [ ext{sin}(180° + θ)] ext{sec} 60°

Substituting known values, we note that:

  • extcosec(180°+θ)=extcosecθ ext{cosec}(180° + θ) = - ext{cosec} θ
  • extsin(360°θ)=extsinθ ext{sin}(360° - θ) = - ext{sin} θ
  • extsec60°=2 ext{sec} 60° = 2

So, substituting these gives:

extcosecθimes(extsinθ)(extsinθ)2- ext{cosec} θ imes (- ext{sin} θ) - (- ext{sin} θ) * 2

This simplifies to:

extcosecθextsinθ+2extsinθ=1 ext{cosec} θ ext{sin} θ + 2 ext{sin} θ = 1

Thus, we arrive at:

1extsin2θ=extcosθ=extR.H.S.1 - ext{sin}^2 θ = ext{cos} θ = ext{R.H.S.}

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;