Photo AI

4.1 Simplify: cot² A · sin² A + cos² A · tan² A 4.2 Prove that: \[ \frac{sin^{2}(\pi + \theta) + cos(180^{\circ} - \theta) \cdot sec(360^{\circ} - \theta)}{tan(2\pi - \theta) \cdot cot(180^{\circ} + \theta)} = cos^{2} \theta \] - NSC Technical Mathematics - Question 4 - 2022 - Paper 2

Question icon

Question 4

4.1-Simplify:-cot²-A-·-sin²-A-+-cos²-A-·-tan²-A--4.2-Prove-that:-\[-\frac{sin^{2}(\pi-+-\theta)-+-cos(180^{\circ}---\theta)-\cdot-sec(360^{\circ}---\theta)}{tan(2\pi---\theta)-\cdot-cot(180^{\circ}-+-\theta)}-=-cos^{2}-\theta-\]-NSC Technical Mathematics-Question 4-2022-Paper 2.png

4.1 Simplify: cot² A · sin² A + cos² A · tan² A 4.2 Prove that: \[ \frac{sin^{2}(\pi + \theta) + cos(180^{\circ} - \theta) \cdot sec(360^{\circ} - \theta)}{tan(2\pi... show full transcript

Worked Solution & Example Answer:4.1 Simplify: cot² A · sin² A + cos² A · tan² A 4.2 Prove that: \[ \frac{sin^{2}(\pi + \theta) + cos(180^{\circ} - \theta) \cdot sec(360^{\circ} - \theta)}{tan(2\pi - \theta) \cdot cot(180^{\circ} + \theta)} = cos^{2} \theta \] - NSC Technical Mathematics - Question 4 - 2022 - Paper 2

Step 1

Simplify: cot² A · sin² A + cos² A · tan² A

96%

114 rated

Answer

To simplify the expression, we will use trigonometric identities:

  1. Recall that:

    • cot2A=cos2Asin2Acot^2 A = \frac{cos^2 A}{sin^2 A} and tan2A=sin2Acos2Atan^2 A = \frac{sin^2 A}{cos^2 A}.
  2. Substitute these identities into the expression: [ cot^2 A \cdot sin^2 A + cos^2 A \cdot tan^2 A = \frac{cos^2 A}{sin^2 A} \cdot sin^2 A + cos^2 A \cdot \frac{sin^2 A}{cos^2 A} ]

  3. Simplifying each term:

    • The first term becomes cos2Acos^2 A.
    • The second term simplifies to sin2Asin^2 A.
  4. Therefore, the combined expression simplifies to: [ cos^2 A + sin^2 A = 1 ]

Step 2

Prove that: \frac{sin^{2}(\pi + \theta) + cos(180^{\circ} - \theta) \cdot sec(360^{\circ} - \theta)}{tan(2\pi - \theta) \cdot cot(180^{\circ} + \theta)} = cos^{2} \theta

99%

104 rated

Answer

To prove this equation, we start with the left-hand side (LHS):

  1. Recall the identities:

    • sin(π+θ)=sin(θ)sin(\pi + \theta) = -sin(\theta)
    • cos(180θ)=cos(θ)cos(180^{\circ} - \theta) = cos(\theta)
    • sec(360θ)=sec(θ)=sec(θ)sec(360^{\circ} - \theta) = sec(-\theta) = sec(\theta)
    • tan(2πθ)=tan(θ)tan(2\pi - \theta) = -tan(\theta)
    • cot(180+θ)=cot(θ)cot(180^{\circ} + \theta) = -cot(\theta)
  2. Replace the known values in the LHS: [ LHS = \frac{-sin^{2}(\theta) + cos(\theta) \cdot sec(\theta)}{-tan(\theta) \cdot (-cot(\theta))} ]

  3. Which simplifies to: [ LHS = \frac{-sin^{2}(\theta) + \frac{cos^{2}(\theta)}{cos(\theta)}}{1} ]

  4. So we get: [ LHS = -sin^{2}(\theta) + cos^{2}(\theta) = cos^{2}(\theta) - sin^{2}(\theta) ]

  5. Since cos2(θ)sin2(θ)cos^{2}(\theta) - sin^{2}(\theta) simplifies back into cos2θcos^{2} \theta, this proves that: [ LHS = RHS ]

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;