4.1 Simplify: cot² A · sin² A + cos² A · tan² A
4.2 Prove that:
\[ \frac{sin^{2}(\pi + \theta) + cos(180^{\circ} - \theta) \cdot sec(360^{\circ} - \theta)}{tan(2\pi - \theta) \cdot cot(180^{\circ} + \theta)} = cos^{2} \theta \] - NSC Technical Mathematics - Question 4 - 2022 - Paper 2
Question 4
4.1 Simplify: cot² A · sin² A + cos² A · tan² A
4.2 Prove that:
\[ \frac{sin^{2}(\pi + \theta) + cos(180^{\circ} - \theta) \cdot sec(360^{\circ} - \theta)}{tan(2\pi... show full transcript
Worked Solution & Example Answer:4.1 Simplify: cot² A · sin² A + cos² A · tan² A
4.2 Prove that:
\[ \frac{sin^{2}(\pi + \theta) + cos(180^{\circ} - \theta) \cdot sec(360^{\circ} - \theta)}{tan(2\pi - \theta) \cdot cot(180^{\circ} + \theta)} = cos^{2} \theta \] - NSC Technical Mathematics - Question 4 - 2022 - Paper 2
Step 1
Simplify: cot² A · sin² A + cos² A · tan² A
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To simplify the expression, we will use trigonometric identities:
Recall that:
cot2A=sin2Acos2A and tan2A=cos2Asin2A.
Substitute these identities into the expression:
[ cot^2 A \cdot sin^2 A + cos^2 A \cdot tan^2 A = \frac{cos^2 A}{sin^2 A} \cdot sin^2 A + cos^2 A \cdot \frac{sin^2 A}{cos^2 A} ]
Simplifying each term:
The first term becomes cos2A.
The second term simplifies to sin2A.
Therefore, the combined expression simplifies to:
[ cos^2 A + sin^2 A = 1 ]