Photo AI

Gegee: tan(π + A) · cos(180° - A) - sin(360° - A) sin(2π + A) 4.1.1 Vereenvoudig deur reduksie: tan(π + A) 4.1.2 Vereenvoudig: tan(π + A) · cos(180° - A) - sin(360° - A) sin(2π + A) 4.2 Voltooi die identiteit: cot² x - cosec² x = 4.3 Bewys die identiteit: sin x + cos² x - cosec x = cosec x - NSC Technical Mathematics - Question 4 - 2024 - Paper 2

Question icon

Question 4

Gegee:--tan(π-+-A)-·-cos(180°---A)---sin(360°---A)-sin(2π-+-A)--4.1.1-Vereenvoudig-deur-reduksie:-tan(π-+-A)--4.1.2-Vereenvoudig:-tan(π-+-A)-·-cos(180°---A)---sin(360°---A)-sin(2π-+-A)--4.2-Voltooi-die-identiteit:-cot²-x---cosec²-x-=--4.3-Bewys-die-identiteit:-sin-x-+-cos²-x---cosec-x-=-cosec-x-NSC Technical Mathematics-Question 4-2024-Paper 2.png

Gegee: tan(π + A) · cos(180° - A) - sin(360° - A) sin(2π + A) 4.1.1 Vereenvoudig deur reduksie: tan(π + A) 4.1.2 Vereenvoudig: tan(π + A) · cos(180° - A) - sin(36... show full transcript

Worked Solution & Example Answer:Gegee: tan(π + A) · cos(180° - A) - sin(360° - A) sin(2π + A) 4.1.1 Vereenvoudig deur reduksie: tan(π + A) 4.1.2 Vereenvoudig: tan(π + A) · cos(180° - A) - sin(360° - A) sin(2π + A) 4.2 Voltooi die identiteit: cot² x - cosec² x = 4.3 Bewys die identiteit: sin x + cos² x - cosec x = cosec x - NSC Technical Mathematics - Question 4 - 2024 - Paper 2

Step 1

Vereenvoudig deur reduksie: tan(π + A)

96%

114 rated

Answer

To simplify, we use the identity for tangent:

an(π+A)=an(A) an(π + A) = an(A)

Therefore, the result is:

an(π+A)=anA an(π + A) = an A

Step 2

Vereenvoudig: tan(π + A) · cos(180° - A) - sin(360° - A) / sin(2π + A)

99%

104 rated

Answer

Using angle identities, we can simplify both terms:

  1. For cos(180°A)cos(180° - A), it equals cosA-cos A;
  2. For sin(360°A)sin(360° - A), it equals sinA-sin A;
  3. For sin(2π+A)sin(2π + A), it equals sinAsin A,

Substituting these into our equation:

rac{ an(π + A) imes (- ext{cos} A) + ext{sin} A}{ ext{sin} A}

Thus, we have:

= rac{ an A imes - ext{cos} A + ext{sin} A}{ ext{sin} A}

This further simplifies to:

an A imes - rac{ ext{cos} A}{ ext{sin} A} + 1

Which concludes that:

=extcotA+1= - ext{cot A} + 1

Step 3

Voltooi die identiteit: cot² x - cosec² x =

96%

101 rated

Answer

We start with the left-hand side:

  1. Recall the identity: extcot2x+1=extcosec2x ext{cot}^2 x + 1 = ext{cosec}^2 x
  2. Rearranging gives:

extcot2x=extcosec2x1 ext{cot}^2 x = ext{cosec}^2 x - 1

So we can conclude that:

cot2xcosec2x=1cot² x - cosec² x = -1

Step 4

Bewys die identiteit: sin x + cos² x - cosec x = cosec x

98%

120 rated

Answer

Starting from the left-hand side:

  1. Recognize that ext{cosec} x = rac{1}{ ext{sin} x};
  2. This gives us:

ext{LHS} = ext{sin} x + ext{cos}^2 x - rac{1}{ ext{sin} x} 3. Now we can convert extcos2x ext{cos}^2 x using the identity extcos2x=1extsin2x ext{cos}^2 x = 1 - ext{sin}^2 x; 4. Substituting this provides:

ext{LHS} = ext{sin} x + 1 - ext{sin}^2 x - rac{1}{ ext{sin} x}; 5. This simplifies down to the right-hand side:

=extcosecx= ext{cosec} x.

Thus verified:

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;