Vereenvoudig die volgende tot 'n enkele trigonometriese verhouding:
4.1 cos θ (tan θ + cot θ)
4.2
sin²(180° + B) · cosec (π - B)
sec(2π - B) · cos(180° - B) - NSC Technical Mathematics - Question 4 - 2021 - Paper 1
Question 4
Vereenvoudig die volgende tot 'n enkele trigonometriese verhouding:
4.1 cos θ (tan θ + cot θ)
4.2
sin²(180° + B) · cosec (π - B)
sec(2π - B) · cos(180° - B)
Worked Solution & Example Answer:Vereenvoudig die volgende tot 'n enkele trigonometriese verhouding:
4.1 cos θ (tan θ + cot θ)
4.2
sin²(180° + B) · cosec (π - B)
sec(2π - B) · cos(180° - B) - NSC Technical Mathematics - Question 4 - 2021 - Paper 1
Step 1
4.1 cos θ (tan θ + cot θ)
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To simplify the expression, we begin with the trigonometric identities:
Sign up now to view full answer, or log in if you already have an account!
Answer
For this part, we again use trigonometric identities:
From the periodic properties, we know that:
sin(180°+B)=−sinB.
Therefore,
sin2(180°+B)=sin2B.
The cosecant of an angle is the reciprocal of sine:
cosec(π−B)=sin(π−B)1=sinB1.
Combining these, we have:
sin2(180°+B)⋅cosec(π−B)=sin2B⋅sinB1=sinB.
Next, we simplify the second expression:
sec(2π−B)⋅cos(180°−B).
Using the identities:
sec(2π−B)=secB and cos(180°−B)=−cosB.
Thus,
sec(2π−B)⋅cos(180°−B)=secB⋅(−cosB)=−1.