Photo AI

Complete the following: 4.1.1 cosec A = .. - NSC Technical Mathematics - Question 4 - 2023 - Paper 2

Question icon

Question 4

Complete-the-following:--4.1.1--cosec-A-=-..-NSC Technical Mathematics-Question 4-2023-Paper 2.png

Complete the following: 4.1.1 cosec A = ... 4.1.2 cos(2π + A) = ... 4.1.3 cosec(180° + A) = ... Simplify the following: sin(180° + A) ⋅ cot(360° - A) ⋅ cos(2π ... show full transcript

Worked Solution & Example Answer:Complete the following: 4.1.1 cosec A = .. - NSC Technical Mathematics - Question 4 - 2023 - Paper 2

Step 1

4.1.1 cosec A = ...

96%

114 rated

Answer

To find the value of cosec A, we use the reciprocal identity:

cosecA=1sinAcosec A = \frac{1}{sin A}

Step 2

4.1.2 cos(2π + A) = ...

99%

104 rated

Answer

Using the periodicity of the cosine function, we find:

cos(2π+A)=cosAcos(2π + A) = cos A

Step 3

4.1.3 cosec(180° + A) = ...

96%

101 rated

Answer

Using the property of cosecant:

cosec(180°+A)=cosecAcosec(180° + A) = -cosec A

Step 4

Simplify the following: sin(180° + A) ⋅ cot(360° - A) ⋅ cos(2π - A) + sin(3(360° - A))

98%

120 rated

Answer

First, apply trigonometric identities:

  1. sin(180°+A)=sinAsin(180° + A) = -sin A
  2. cot(360°A)=cotAcot(360° - A) = cot A
  3. cos(2πA)=cosAcos(2π - A) = cos A

Now, substituting these values, we simplify to:

sinAcotAcosA+sin(3(360°A)) -sin A \cdot cot A \cdot cos A + sin(3(360° - A))

The sine function yields: sin(3(360°A))=sin(3A)=sin(3A)sin(3(360° - A)) = sin(-3A) = -sin(3A)

Combining these, we have: sinAcotAcosAsin(3A)-sin A \cdot cot A \cdot cos A - sin(3A)

Step 5

Given: cosec x - cosec x ⋅ sec x sec x = (tan² x + 1)

97%

117 rated

Answer

Starting with the expression:

  1. cosecxcosecxsecx=cosecx(1secx)cosec x - cosec x \cdot sec x = cosec x(1 - sec x)

Using the identity for sec x: secx=1cosxsec x = \frac{1}{cos x}

This gives: tan2x+1=sin2x+cos2xcos2x=1/cos2x tan² x + 1 = \frac{sin² x + cos² x}{cos² x} = 1/cos² x Thus confirming the identity

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;