Vereenvoudig (toon ALLE berekeninge) die volgende sonder om 'n sakrekenaar te gebruik:
3.1.1 $
\left( 2a^3 \right)^3$
3.1.2
$\log_p p + \log_{1}$
3.1.3
$\frac{\sqrt{48 - \sqrt{12}}}{2\sqrt{75}}$
- NSC Technical Mathematics - Question 3 - 2018 - Paper 1
Question 3
Vereenvoudig (toon ALLE berekeninge) die volgende sonder om 'n sakrekenaar te gebruik:
3.1.1 $
\left( 2a^3 \right)^3$
3.1.2
$\log_p p + \log_{1}$
3.1.3
$\frac{\... show full transcript
Worked Solution & Example Answer:Vereenvoudig (toon ALLE berekeninge) die volgende sonder om 'n sakrekenaar te gebruik:
3.1.1 $
\left( 2a^3 \right)^3$
3.1.2
$\log_p p + \log_{1}$
3.1.3
$\frac{\sqrt{48 - \sqrt{12}}}{2\sqrt{75}}$
- NSC Technical Mathematics - Question 3 - 2018 - Paper 1
Step 1
3.1.1 $
\left( 2a^3 \right)^3$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To simplify the expression (2a3)3, we use the property of exponents that states (xy)n=xnyn.
Thus,
(2a3)3=23⋅(a3)3=8a9.
Step 2
3.1.2
$\log_p p + \log_{1}$
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Using the property of logarithms, we have:
logpp=1, since any log base of itself is equal to one.
For log1, the result is 0, because anything to the power of 0 gives 1, thus:
log1=0.
Hence,
logpp+log1=1+0=1.
Step 3
3.1.3
$\frac{\sqrt{48 - \sqrt{12}}}{2\sqrt{75}}$
96%
101 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
First, we simplify 12 and 75:
12=2375=53.
Substituting these values back, we have:
2⋅5348−23=10348−23.
Next, find 48−23 which is more complicated; thus we leave it as is if we cannot simplify further.