Photo AI

Gegewe Q = 42° en P = 71° Bepaal: 3.1.1 cot(P − Q) 3.1.2 cos Q sec P Gegewe 3sec β − 5 = 0 en β ∈ [90° ; 360°] Bepaal sin² β − cos² β met behulp van 'n diagram - NSC Technical Mathematics - Question 3 - 2022 - Paper 2

Question icon

Question 3

Gegewe-Q-=-42°-en-P-=-71°--Bepaal:---3.1.1-cot(P-−-Q)--3.1.2-cos-Q--sec-P---Gegewe-3sec-β-−-5-=-0-en-β-∈-[90°-;-360°]--Bepaal-sin²-β-−-cos²-β-met-behulp-van-'n-diagram-NSC Technical Mathematics-Question 3-2022-Paper 2.png

Gegewe Q = 42° en P = 71° Bepaal: 3.1.1 cot(P − Q) 3.1.2 cos Q sec P Gegewe 3sec β − 5 = 0 en β ∈ [90° ; 360°] Bepaal sin² β − cos² β met behulp van 'n diagr... show full transcript

Worked Solution & Example Answer:Gegewe Q = 42° en P = 71° Bepaal: 3.1.1 cot(P − Q) 3.1.2 cos Q sec P Gegewe 3sec β − 5 = 0 en β ∈ [90° ; 360°] Bepaal sin² β − cos² β met behulp van 'n diagram - NSC Technical Mathematics - Question 3 - 2022 - Paper 2

Step 1

3.1.1 cot(P − Q)

96%

114 rated

Answer

To find cot(P − Q), we use the identity:

cot(PQ)=1tan(PQ)cot(P - Q) = \frac{1}{tan(P - Q)}

First, we calculate (P - Q):

PQ=71°42°=29°P - Q = 71° - 42° = 29°

Now substitute:

cot(29°)=1tan(29°)10.5543091.80.cot(29°) = \frac{1}{tan(29°)} \approx \frac{1}{0.554309} \approx 1.80.

Step 2

3.1.2 cos Q

99%

104 rated

Answer

To calculate cos Q:

cos(42°)0.7431.cos(42°) \approx 0.7431.

Step 3

sec P

96%

101 rated

Answer

To find sec P, we use the relation:

sec(P)=1cos(P)sec(P) = \frac{1}{cos(P)}

Now substituting for P:

sec(71°)=1cos(71°)1/0.32043.12.sec(71°) = \frac{1}{cos(71°)} \approx 1 / 0.3204 \approx 3.12.

Step 4

3.2 3sec β − 5 = 0

98%

120 rated

Answer

To solve for β, we first isolate sec β:

3sec(β)=53sec(β) = 5

Thus:

sec(β)=53sec(β) = \frac{5}{3}

We know that (sec = \frac{1}{cos(β)}), therefore:

cos(β)=35.cos(β) = \frac{3}{5}.

Using the diagram for the triangle:

y=5232=16=4y = \sqrt{5^2 - 3^2} = \sqrt{16} = 4

Finally, we determine:

sin2(β)cos2(β)=(45)2(35)2=1625925=725.sin^2(β) - cos^2(β) = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{16}{25} - \frac{9}{25} = \frac{7}{25}.

Step 5

3.3 Los op vir x: cos 2x − tan 29° = 0

97%

117 rated

Answer

We set:

cos(2x)=tan(29°).cos(2x) = tan(29°).

Next, we know:

tan(29°)0.55431.tan(29°) \approx 0.55431.

Now we can solve for x. We convert to the angle:

2x=360°56.34°2x=303.66°2x = 360° - 56.34° \Rightarrow 2x = 303.66°

Thus:

x151.83°.x ≈ 151.83°.

Considering the other solutions for 0° ≤ 2x < 360° would give us:

x28.17°.x ≈ 28.17°.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;