Photo AI

4.1 Vereenvoudig: cot² A + sin² A + cos² A · tan A 4.2 Bewys dat: \( rac{sin²(π + θ) + cos(180° - θ) - sec(360° - θ)}{tan(2π - θ) · cot(180° + θ)} = cos² θ\) - NSC Technical Mathematics - Question 4 - 2022 - Paper 2

Question icon

Question 4

4.1-Vereenvoudig:--cot²-A-+-sin²-A-+-cos²-A-·-tan-A--4.2-Bewys-dat:--\(-rac{sin²(π-+-θ)-+-cos(180°---θ)---sec(360°---θ)}{tan(2π---θ)-·-cot(180°-+-θ)}-=-cos²-θ\)-NSC Technical Mathematics-Question 4-2022-Paper 2.png

4.1 Vereenvoudig: cot² A + sin² A + cos² A · tan A 4.2 Bewys dat: \( rac{sin²(π + θ) + cos(180° - θ) - sec(360° - θ)}{tan(2π - θ) · cot(180° + θ)} = cos² θ\)

Worked Solution & Example Answer:4.1 Vereenvoudig: cot² A + sin² A + cos² A · tan A 4.2 Bewys dat: \( rac{sin²(π + θ) + cos(180° - θ) - sec(360° - θ)}{tan(2π - θ) · cot(180° + θ)} = cos² θ\) - NSC Technical Mathematics - Question 4 - 2022 - Paper 2

Step 1

Vereenvoudig: cot² A + sin² A + cos² A · tan A

96%

114 rated

Answer

To simplify the expression, we start with:

extcot2A+extsin2A+extcos2AanA ext{cot}^2 A + ext{sin}^2 A + ext{cos}^2 A an A

Using the identity
extcotA=extcosAextsinA,andtanA=extsinAextcosAext{cot} A = \frac{ ext{cos} A}{ ext{sin} A}, \text{and} \tan A = \frac{ ext{sin} A}{ ext{cos} A},

we can rewrite the expression as:

extcos2Aextsin2A+extsin2A+extcos2AextsinAextcosA\frac{ ext{cos}^2 A}{ ext{sin}^2 A} + ext{sin}^2 A + ext{cos}^2 A \cdot \frac{ ext{sin} A}{ ext{cos} A}

Notice that: cos2AsinAcosA=cosAsinA\text{cos}^2 A · \frac{\text{sin} A}{\text{cos} A} = \text{cos} A \cdot \text{sin} A

Thus, the expression can be rearranged to:

cot2A+sin2A+cosAsinA\text{cot}^2 A + \text{sin}^2 A + \text{cos} A \cdot \text{sin} A

Combining \text{sin}^2 A and \text{cos}^2 A using the Pythagorean identity: sin2A+cos2A=1\text{sin}^2 A + \text{cos}^2 A = 1

So we simplify further:

cot2A+1\text{cot}^2 A + 1

Since (\text{cot}^2 A + 1 = \text{csc}^2 A), the final simplified form is:

11.

Step 2

Bewys dat: \(\frac{sin²(\pi + θ) + cos(180° - θ) - sec(360° - θ)}{tan(2π - θ) · cot(180° + θ)} = cos² θ\)

99%

104 rated

Answer

To prove the equation, we start with:

LHS=sin2(π+θ)+cos(180°θ)sec(360°θ)tan(2πθ)cot(180°+θ)LHS = \frac{\text{sin}^2(\pi + θ) + \text{cos}(180° - θ) - \text{sec}(360° - θ)}{\tan(2π - θ) · \cot(180° + θ)}

Using known identities:

  1. ( sin(\pi + θ) = -sin(θ) ) implies ( sin^2(\pi + θ) = sin^2(θ) )
  2. ( cos(180° - θ) = -cos(θ) )
  3. ( sec(360° - θ) = sec(θ) ) or ( \frac{1}{cos(θ)} )

Substituting these back into the LHS gives:

LHS=sin2(θ)cos(θ)1cos(θ)tan(2πθ)cot(180°+θ)LHS = \frac{sin^2(θ) - cos(θ) - \frac{1}{cos(θ)}}{tan(2π - θ) · cot(180° + θ)}

Now, simplify the denominator: tan(2πθ)=tan(θ)andcot(180°+θ)=cot(θ)tan(2π - θ) = -tan(θ) \quad and \quad \cot(180° + θ) = -\cot(θ)

Thus:

= \frac{sin^2(θ) - cos(θ) - (1/cos(θ))}{tan(θ) · cot(θ)} $$ Knowing that \( \tan(θ)·\cot(θ) = 1 \), we have: $$ LHS = sin^2(θ) - cos(θ) - (1/cos(θ)) $$ Combine like terms: $$ = cos^2(θ) $$ Therefore, since LHS = RHS, we conclude that: $$ LHS = \text{RHS} $$.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;