Photo AI

Twee blokke met massas van 220 kg en 75 kg lê stil op 'n RUWE horisontale oppervlak - NSC Technical Sciences - Question 2 - 2023 - Paper 1

Question icon

Question 2

Twee-blokke-met-massas-van-220-kg-en-75-kg-lê-stil-op-'n-RUWE-horisontale-oppervlak-NSC Technical Sciences-Question 2-2023-Paper 1.png

Twee blokke met massas van 220 kg en 75 kg lê stil op 'n RUWE horisontale oppervlak. Die blokke word deur 'n ligte, onbreekbare tou aan mekaar verbind. Die tou maak ... show full transcript

Worked Solution & Example Answer:Twee blokke met massas van 220 kg en 75 kg lê stil op 'n RUWE horisontale oppervlak - NSC Technical Sciences - Question 2 - 2023 - Paper 1

Step 1

Teken 'n benoemde vyne kragdiagram, met AL die kragte aangedui wat op die 220 kg-blok uitgeoefen word.

96%

114 rated

Answer

In the free body diagram for the 220 kg block, we represent the acting forces:

  • Gravitational force (weight) acting downwards: Fg=mimesg=220extkgimes9.81extm/s2=2168.2extNF_g = m imes g = 220 ext{ kg} imes 9.81 ext{ m/s}^2 = 2168.2 ext{ N}.
  • Normal force acting upwards (N). Since there is no vertical movement, N=FgN = F_g.
  • Tension (T) acting to the left at an angle of 30°.
  • Applied force of 165 N acting to the left.
  • Kinetic frictional force (f_k) acting to the right, opposing the motion and equal to 35 N.

Step 2

Stel Newton se Tweede Bewegingse van woorde.

99%

104 rated

Answer

Newton's Second Law states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration:

Fnet=maF_{net} = ma. In this case,

Fnet=FappliedFfrictionTxF_{net} = F_{applied} - F_{friction} - T_x

where Fapplied=165extNF_{applied} = 165 ext{ N}, Ffriction=35extNF_{friction} = 35 ext{ N}, and TxT_x is the horizontal component of tension. Since the block is moving to the left, we need to take into account the direction of each force.

Step 3

Bereken die grootte van die spanning in die tou.

96%

101 rated

Answer

Using the net force equation from Newton's Second Law, we have:

Fnet=165extN35extNTxF_{net} = 165 ext{ N} - 35 ext{ N} - T_x. Assuming the acceleration (a) is constant and from the problem, we can figure out the effective mass as follows:

a = rac{F_{net}}{m} For our setup:

Fnet=220extkgimes0.4extmF_{net} = 220 ext{ kg} imes 0.4 ext{ m} = mass x acceleration. Solving this yields T = 48.498 ext{ N} or approximately 48.28 ext{ N}.

Step 4

Bereken die koëffisiënt van kinetiese wrijving, μk, van die 75 kg-blok.

98%

120 rated

Answer

To find the coefficient of kinetic friction (μkμ_k), we use:

fk=μkimesNf_k = μ_k imes N, where:

  • fkf_k = 12 N (given)
  • NN = weight of the 75 kg block = mimesg=75extkgimes9.81extm/s2=735.75extNm imes g = 75 ext{ kg} imes 9.81 ext{ m/s}^2 = 735.75 ext{ N}.

Rearranging the formula gives:

ightarrow μ_k ext{ approximately equals } 0.0163.$

Step 5

Verduidelik die afname of toename van VRAAG 2.5 hieronder.

97%

117 rated

Answer

The tension in the rope affects the motion of the blocks. As more force is applied to move the 220 kg block, the interaction between frictional forces and the applied forces will dictate the overall movement. If the tension increases, it would generally suggest an increase in acceleration unless countered by resistance. Therefore, the understanding of tension as it impacts the blocks confirms how net forces change in response to applied external forces.

Join the NSC students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;