Photo AI

Last Updated Sep 27, 2025

Integration by Parts Simplified Revision Notes

Revision notes with simplified explanations to understand Integration by Parts quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

433+ students studying

8.2.8 Integration by Parts

Integration By Parts

When integrating a product of two (unrelated by differentiation) functions, we use integration by parts.

e.g. 3x2(7x3+4x)dx\text{e.g. } \int 3x^2 (7x^3 + 4x) \, dx

Since the outside is the differential of the inside (×k\times k), these functions are "related by differentiation." In this instance, substitution is appropriate.

e.g. xsinxdx\text{e.g. } \int x \sin x \, dx x xx dx=x22×x22+c\xcancel{\int x\ xx\ dx = \frac {x^2}{2} \times \frac {x^2}{2}+c}

The two functions are not "related by differentiation," so integration by parts is appropriate.


Integration By Parts: Deriving the Formula

infoNote

Starting with the product rule for differentiation:

(uv)=uv+vu(uv)' = uv' + vu'

Swapped LHS and RHS:

uv=(uv)vuuv' = (uv)' - vu'uvdx=(uv)dxvudx\int uv' \, dx = \int (uv)' \, dx - \int vu' \, dx

Integrating both sides dx:

uvdx=uvvudx\int uv' \, dx = uv - \int vu' \, dx

When integrating the product of two functions, it can sometimes be simpler to use this formula:

udvdxdx=uvvdudxdx\int u \frac{dv}{dx} \, dx = uv - \int v \frac{du}{dx} \, dx

infoNote
  1. xsinxdx\int x \sin x \, dx cannot be integrated in its current form. Using integration by parts:

Let u=xdudx=1u = x \Rightarrow \frac{du}{dx} = 1

v=cosxdvdx=sinxv = \cos x \Leftarrow \frac{dv}{dx} = \sin xxsinxdx=uvvdudxdx=xcosxcosx×1dx\int x \sin x \, dx = uv - \int v \frac{du}{dx} \, dx = -x \cos x - \int -\cos x \times 1\, dx=xcosx+cosdx==xcosx+sinx+c= -x \cos x + \int \cos \, dx = = -x \cos x + \sin x + c=xcosx+sinx+c= -x \cos x + \sin x + c

infoNote
  1. xexdx\int xe^x \, dx Let u=xdudx=1u = x \Rightarrow \frac{du}{dx} = 1
v=exdvdx=exv = e^x \Leftarrow \frac{dv}{dx} = e^xxex=xexexdx=xexex+C\Rightarrow \int xe^x = xe^x - \int e^x \, dx = xe^x - e^x + C

infoNote
  1. xln(x)dx\int x \ln(x) \, dx Cannot find ln(x)dx\int \ln(x) \, dx directly. Try u=ln(x)u=\ln(x) instead

Let u=ln(x)dudx=x1u = \ln(x) \Rightarrow \frac{du}{dx} = x^{-1}

v=x22dvdx=xv = \frac{x^2}{2} \Leftarrow \frac{dv}{dx} = x

xln(x)dx=x22lnxx22x1dx\Rightarrow \int x \ln(x) \, dx = \frac{x^2}{2}\ln x - \int \frac{x^2}{2} x^{-1} \, dx=x22lnxx2dx=x22lnxx24+c= \frac{x^2}{2}\ln x - \int \frac {x}{2}dx = \frac{x^2}{2}\ln x - \frac{x^2}{4} + c
infoNote

Key Point: ln(x)\ln(x) can't be directly integrated, so it cannot be the dvdx\frac{dv}{dx} in integration by parts.


infoNote
lnxdx1×lnxdx\int \ln x \, dx \equiv \int 1 \times \ln x \, dxLetu=lnxdudx=x1\text {Let} \quad u = \ln x \Rightarrow \frac{du}{dx} = x^{-1}Letv=xdvdx=1\text {Let} \quad v = x \Leftarrow \frac{dv}{dx} = 1lnx=xlnxxx1dx=xlnx1dx=xlnxx+c\Rightarrow \int \ln x = x \ln x - \int x x^{-1}\, dx = x \ln x-\int 1 \,dx= x \ln x - x + c

infoNote
x2cosxdx\int x^2 \cos x \, dxLetu=x2dudx=2x\text {Let} \quad u = x^2 \Rightarrow \frac{du}{dx} = 2xLetv=sinxdvdx=cosx\text {Let} \quad v = \sin x \Rightarrow \frac{dv}{dx} = \cos xx2cosx=x2sinx2xsinxdx()\Rightarrow \int x^2 \cos x = x^2 \sin x - \int 2x \sin x \, dx \quad (*)=x2sinx(2xcosx+2sinx)+c= x^2 \sin x - (-2x \cos x + 2 \sin x) + c=x2sinx+2xcosx2sinx+c= x^2 \sin x + 2x \cos x - 2 \sin x + c()u=2xdudx=2v=cosxdvdx=sinx(*)\quad u = 2x \Rightarrow \frac {du}{dx} = 2 \quad \bigg|\quad v = -\cos x \Leftarrow \frac {dv}{dx} = \sin x2xsinxdx=2xcosx2cosxdx\int 2x \sin x \, dx = -2x \cos x - \int -2 \cos x \, dx2xsinxdx=2xcosx+2cosxdx\int 2x \sin x \, dx = -2x \cos x + \int 2 \cos x \, dx=2xcosx+2sinx= -2x \cos x + 2 \sin x

infoNote
12xexdxCalculate the :highlight[exact value].\int_1^2 x e^x \, dx \quad \text{Calculate the :highlight[exact value].}Letu=xdudx=1\text {Let} \quad u = x \Rightarrow \frac{du}{dx} = 1Letv=exdvdx=ex\text {Let} \quad v = e^x \Rightarrow \frac{dv}{dx} = e^xI=[xexexdx]12=[xexex]12\Rightarrow I = \left[ x e^x - \int e^x \, dx \right]_1^2 = \left[ x e^x - e^x \right]_1^2=[2(e2e2)](ee)= \left[ 2(e^2 - e^2) \right] - \left(\cancel {e - e} \quad\right)=e2= e^2

Problem Statement:

infoNote

By first using the substitution t=x+1t = \sqrt{x+1}, find e2x+1dx\int e^{2\sqrt{x+1}} \, dx.

Solution:

Lett=(x+1)12\text {Let} \quad t = (x+1)^{\frac{1}{2}}dtdx=12(x+1)12=12(x+1)12=12t\Rightarrow \frac{dt}{dx} = \frac{1}{2} (x+1)^{-\frac{1}{2}} = \frac {1}{2(x+1)^{\frac{1}{2}}} = \frac{1}{2t}dtdx=12t\Rightarrow \frac{dt}{dx} = \frac{1}{2t}dt=12tdxdx=2tdt\Rightarrow dt = \frac{1}{2t} dx \Rightarrow dx = 2t \, dt

Substitution:

I=e2t×2tdt=2te2tdtI = \int e^{2t} \times 2t \, dt = \int 2te^{2t} \, dt

Integrating by parts:

Letu=2tdudt=2\text {Let} \quad u = 2t \Rightarrow \frac{du}{dt} = 2Letv=12e2tdvdt=e2t\text {Let} \quad v = \frac{1}{2}e^{2t} \Rightarrow \frac{dv}{dt} = e^{2t}I=2t×12e2t12e2t×2dtI = \cancel2t \times \frac {1}{\cancel2}e^{2t}-\int \frac {1}{\cancel2}e^{2t} \times \cancel2 \, dtI=te2te2tdtI = t e^{2t} - \int e^{2t} \, dt=te2t12e2t+c= t e^{2t} - \frac{1}{2} e^{2t} + c=x+1e2x+112e2x+1+c\boxed {= \sqrt{x+1} e^{2\sqrt{x+1}} - \frac{1}{2} e^{2\sqrt{x+1}} + c}

:::


Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Integration by Parts

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

120 flashcards

Flashcards on Integration by Parts

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

12 quizzes

Quizzes on Integration by Parts

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

11 questions

Exam questions on Integration by Parts

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Integration by Parts

Create custom exams across topics for better practice!

Try Maths Pure exam builder

18 papers

Past Papers on Integration by Parts

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Integration by Parts you should explore

Discover More Revision Notes Related to Integration by Parts to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Further Integration

Integration as the limit of a sum

user avatar
user avatar
user avatar
user avatar
user avatar

364+ studying

197KViews

96%

114 rated

Further Integration

Integrating Other Functions (Trig, ln & e etc)

user avatar
user avatar
user avatar
user avatar
user avatar

401+ studying

186KViews

96%

114 rated

Further Integration

Reverse Chain Rule

user avatar
user avatar
user avatar
user avatar
user avatar

245+ studying

192KViews

96%

114 rated

Further Integration

f'(x)/f(x)

user avatar
user avatar
user avatar
user avatar
user avatar

301+ studying

187KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered