Photo AI

Last Updated Sep 27, 2025

Compound Angle Formulae Simplified Revision Notes

Revision notes with simplified explanations to understand Compound Angle Formulae quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

324+ students studying

5.6.1 Compound Angle Formulae

Compound angle formulae are trigonometric identities that express the sine, cosine, and tangent of the sum or difference of two angles in terms of the sine, cosine, and tangent of the individual angles. These formulae are extremely useful in solving trigonometric equations, simplifying expressions, and proving other trigonometric identities.

1. Sine of a Sum/Difference:

  • Sine of the Sum of Two Angles:

sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B

  • This formula expresses the sine of the sum of two angles AA and BB as a combination of the sines and cosines of the individual angles.
  • Sine of the Difference of Two Angles:

sin(AB)=sinAcosBcosAsinB\sin(A - B) = \sin A \cos B - \cos A \sin B

  • This formula expresses the sine of the difference of two angles A and B similarly.

2. Cosine of a Sum/Difference:

  • Cosine of the Sum of Two Angles:

cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B

  • This formula expresses the cosine of the sum of two angles AA and BB in terms of the cosines and sines of the individual angles.
  • Cosine of the Difference of Two Angles:

cos(AB)=cosAcosB+sinAsinB\cos(A - B) = \cos A \cos B + \sin A \sin B

  • This formula expresses the cosine of the difference of two angles AA and B.B.

3. Tangent of a Sum/Difference:

  • Tangent of the Sum of Two Angles:

tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}

  • This formula expresses the tangent of the sum of two angles AA and BB in terms of the tangents of the individual angles.
  • Tangent of the Difference of Two Angles:

tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}

  • This formula expresses the tangent of the difference of two angles AA and B. B.

4. Derivation of Compound Angle Formulae:

The compound angle formulae can be derived using the unit circle, trigonometric identities, and geometric methods. Here's a brief outline of how you might derive them:

  • Sine and Cosine Formulae:
  • Consider the angles A and B placed on the unit circle. Use the coordinates of the points where the terminal sides of these angles intersect the circle to express sin(A+B)sin(A + B) and cos(A+B).\cos(A + B).
  • Use the fact that the length of the hypotenuse in the unit circle is 11, and apply the Pythagorean identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 to derive the formulae.
  • Tangent Formula:
  • The tangent formulae can be derived by dividing the sine formula by the cosine formula:

tan(A±B)=sin(A±B)cos(A±B)\tan(A \pm B) = \frac{\sin(A \pm B)}{\cos(A \pm B)}

5. Example Problems Using Compound Angle Formulae:

infoNote

Example 1: Calculate sin(75\sin(75^\circ) using the compound angle formula.

  • Solution:
  • Recognize that 75=45+30.75^\circ = 45^\circ + 30^\circ.
  • Apply the sine of a sum formula:

sin(75)=sin(45+30)=sin45cos30+cos45sin30\sin(75^\circ) = \sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ

=2232+2212=64+24=6+24= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}

infoNote

Example 2: Simplify cos(4530).\cos(45^\circ - 30^\circ).

  • Solution:
  • Recognize that 4530=15.45^\circ - 30^\circ = 15^\circ.
  • Apply the cosine of a difference formula:

cos(4530)=cos45cos30+sin45sin30\cos(45^\circ - 30^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ

=2232+2212=64+24=6+24= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}

infoNote

Example 3: Find tan(105)\tan(105^\circ).

  • Solution:
  • Recognize that 105=60+45.105^\circ = 60^\circ + 45^\circ.
  • Apply the tangent of a sum formula:

tan(105)=tan60+tan451tan60tan45=3+1131\tan(105^\circ) = \frac{\tan 60^\circ + \tan 45^\circ}{1 - \tan 60^\circ \tan 45^\circ} = \frac{\sqrt{3} + 1}{1 - \sqrt{3} \cdot 1}

=3+1131+31+3=(3+1)(1+3)(13)(1+3)= \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \cdot \frac{1 + \sqrt{3}}{1 + \sqrt{3}} = \frac{(\sqrt{3} + 1)(1 + \sqrt{3})}{(1 - \sqrt{3})(1 + \sqrt{3})}

=(3+1)(1+3)13=(3+1)(1+3)2=4322=4232= \frac{(\sqrt{3} + 1)(1 + \sqrt{3})}{1 - 3} = \frac{(\sqrt{3} + 1)(1 + \sqrt{3})}{-2} = \frac{-4\sqrt{3} - 2}{2} = \frac{-4 - 2\sqrt{3}}{-2}

=2+32= \frac{2 + \sqrt{3}}{2}

6. Applications of Compound Angle Formulae:

  • Solving Trigonometric Equations: Compound angle formulae are essential when solving trigonometric equations involving sums or differences of angles.
  • Proving Identities: These formulae are frequently used in proving more complex trigonometric identities.
  • Simplifying Expressions: They help in simplifying trigonometric expressions to make them easier to evaluate or integrate.
  • Geometry and Physics: These formulae are useful in applications involving rotations, wave interference, and oscillations.

Summary:

infoNote
  • Compound angle formulae are powerful tools in trigonometry that allow you to express the sine, cosine, and tangent of sums and differences of angles in terms of the individual angles.
  • These formulae are essential for solving complex trigonometric equations, simplifying expressions, and proving identities.
  • Mastery of these identities expands your ability to tackle a wide range of trigonometric problems in mathematics, physics, and engineering.

Expanding Trig Brackets: Compound Angle Formulae

When expanding trigonometric functions, e.g., sin(A±B)\sin(A \pm B), the ordinary rules of algebra do not apply.

Proposition:

sin(A±B)=sinAcosB±sinBcosA\sin(A \pm B) = \sin A \cos B \pm \sin B \cos A

Proof:

image

Finding the lengths of the four coloured sides:

  1. For the side corresponding to cosA\cos A:
cosA=Red segment1Red segment=cosA\cos A = \frac{\text{Red segment}}{1} \Rightarrow \text{Red segment} = \cos A
  1. For the side corresponding to sinA\sin A:
sinA=Blue segment1Blue segment=sinA\sin A = \frac{\text{Blue segment}}{1} \Rightarrow \text{Blue segment} = \sin A
  1. For the side corresponding to sinBcosA\sin B \cos A:
cosB=Green segmentsinAGreen segment=sinAcosB\cos B = \frac{\text{Green segment}}{\sin A} \Rightarrow \text{Green segment} = \sin A \cos B
  1. For the side corresponding to sinB\sin B:
sinB=Orange segmentsinAOrange segment=sinBcosA\sin B = \frac{\text{Orange segment}}{\sin A} \Rightarrow \text{Orange segment} = \sin B \cos A

For the equation sin(A+B)\sin(A + B):

image

The calculation in the diagram confirms that:

sin(A+B)=purple segment1purple segment=sin(A+B)\sin(A + B) = \frac{\text{purple segment}}{1} \Rightarrow \text{purple segment} = \sin(A + B)

From the diagram, we can also see that:

sin(A+B)sin(A)cos(B)+sin(B)cos(A)(:success[proven by the diagram])\therefore \quad \sin(A + B) \equiv \sin(A)\cos(B) + \sin(B)\cos(A) \quad \text{(:success[proven by the diagram])}

Proposition:

cos(A±B)=cosAcosBsinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B

Proof:

image image image

Diagram Explanation:

infoNote
  • The base of the blue triangle is given by:
cos(A+B)=x1    x=cos(A+B)\cos(A+B) = \frac{x}{1} \implies x = \cos(A+B)
  • Notice also that xx can be obtained by:
cosAcosBsinAsinB\cos A \cos B - \sin A \sin Bcos(A+B)=cosAcosBsinAsinB\therefore \cos(A+B) = \cos A \cos B - \sin A \sin B \quad \square
image

Compound Angle Formulae

infoNote
sin(A±B)=sinAcosB±cosAsinB\sin(A \pm B) = \sin A \cos B \pm \cos A \sin Bcos(A±B)=cosAcosBsinAsinB\cos(A \pm B) = \cos A \cos B \mp \sin A \sin Btan(A±B)=tanA±tanB1tanAtanB\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}

infoNote

Example:

Use the compound angle formulae to expand and simplify sin(θ+π2)\sin(\theta + \frac{\pi}{2}):

Let A=θ,B=π2A = \theta, B = \frac{\pi}{2}:

sin(θ+π2)=sinθcosπ2+cosθsinπ2\sin(\theta + \frac{\pi}{2}) = \xcancel{\sin \theta \cos \frac{\pi}{2}} + \cos \theta \sin \frac{\pi}{2}

Since cosπ2=0\cos \frac{\pi}{2} = 0 and sinπ2=1\sin \frac{\pi}{2} = 1:

=cosθ= \cos \theta

infoNote

Example: "Factorise"

sin45cos15cos45sin15\sin 45 \cos 15 - \cos 45 \sin 15

Hint: The trick here is to look at which trig identity it most closely matches.

sin(AB)sinAcosBcosBsinA\sin(A - B) \equiv \sin A \cos B - \cos B \sin A

We can see here that A=45,B=15A = 45^\circ, B = 15^\circ.

it is identical to sin(4515)=sin30\Rightarrow \text{it is identical to } \sin(45^\circ - 15^\circ) = \sin 30^\circ

infoNote

Given that sinA=45,0<A<90\sin A = \frac{4}{5}, 0^\circ < A < 90^\circ and that cosB=23,0<B<90\cos B = \frac{2}{3}, 0^\circ < B < 90^\circ, find without using a calculator the value of:

  1. tanA\tan A
  2. sinB\sin B
  3. cos(A+B)\cos (A + B)
  4. sin(A+B)\sin (A + B)

Diagrams:

  1. For angle A: sinA=45=OPPHYP\sin A=\frac {4}{5}=\frac {OPP}{HYP}
  • Hypotenuse = 5, Opposite = 4, Adjacent = 5242=\highlight[3]\sqrt{5^2 - 4^2} = \highlight[3]
  1. For angle B: cosB=23=ADJHYP\cos B=\frac {2}{3}=\frac {ADJ}{HYP}
  • Hypotenuse = 3, Adjacent = 2, Opposite = 3222=\highlight[5]\sqrt{3^2 - 2^2} = \highlight[\sqrt{5}]

Solutions:

a)tanA=OPPADJ=43a) \tan A = \frac{\text{OPP}}{\text{ADJ}} = \frac{4}{3}

b) sinB=OPPHYP=53\sin B = \frac{\text{OPP}}{\text{HYP}} = \frac{\sqrt{5}}{3}

c) cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B

  • We can now find each of these individually from the triangles to evaluate the expression. From above triangle, cosA=ADJHYP=35\cos A = \frac{\text{ADJ}}{\text{HYP}} = \frac{3}{5}
cos(A+B)=(35)(23)(45)(53)=254515=64515\therefore \cos(A + B) = \left(\frac{\cancel3}{5}\right)\left(\frac{2}{\cancel3}\right) - \left(\frac{4}{5}\right)\left(\frac{\sqrt{5}}{3}\right) = \frac{2}{5} - \frac{4\sqrt{5}}{15} = \frac{6 - 4\sqrt{5}}{15}

d) sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B

=(45)(23)+(35)(53)=815+55=8+3515= \left(\frac{4}{5}\right)\left(\frac{2}{3}\right) + \left(\frac{\cancel3}{5}\right)\left(\frac{\sqrt{5}}{\cancel3}\right) = \frac{8}{15} + \frac{\sqrt{5}}{5} = \frac{8 + 3\sqrt{5}}{15}

Solving Equations With Compound Angle Formulae

infoNote

Example: Solve cosθcos(0.2)sinθsin(0.2)=0.4\cos \theta \cos(0.2^\circ) - \sin \theta \sin(0.2^\circ) = 0.4 For 0θ2π0 \leq \theta \leq 2\pi

In any example like this, there are certain questions to ask:

  1. Is it solvable as it is? If so, do it.
  2. If not, ask "do I need to expand or factorize?"

Step-by-Step Solution:

  • Let A=θA = \theta and B=0.2B = 0.2^\circ
cos(A+B)=cos(θ+0.2)\Rightarrow \cos(A + B) = \cos(\theta + 0.2^\circ)cos(θ+0.2)=0.4\Rightarrow \cos(\theta + 0.2^\circ) = 0.4

From the cosine graph:

θ+0.2=1.1593\theta + 0.2 = 1.15932π1.15932\pi - 1.15932π+1.15932\pi + 1.15930.2θ+0.22π+0.20.2 \leq \theta + 0.2 \leq 2\pi + 0.2θ+0.2=1.1593,5.1239,7.4425\theta +0.2 = 1.1593, 5.1239, \cancel{7.4425}

Calculating for θ\theta:

θ=:success[0.9533],:success[4.9239]\theta = :success[0.9533], :success[4.9239]

infoNote

Example: Solve cos(x+30)=sinxfor0x360\cos(x + 30^\circ) = \sin x \quad for \quad 0 \leq x \leq 360^\circ.

cosxcos30sinxsin30=sinx\cos x \cos 30^\circ - \sin x \sin 30^\circ = \sin x32cosx12sinx=sinx\frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x = \sin x32cosx=32sinx\frac{\sqrt{3}}{2} \cos x = \frac{3}{2} \sin xcosx=3sinx\cos x = \sqrt{3} \sin x1=3sinxcosx1 = \sqrt{3} \frac{\sin x}{\cos x}1=3tanxtanx=131 = \sqrt{3} \tan x \Rightarrow \tan x = \frac{1}{\sqrt{3}}x=tan1(13)=30,210x = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = 30^\circ, 210^\circ

From the graph:

x=:success[30],:success[210]x = :success[30^\circ], :success[210^\circ]

Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Compound Angle Formulae

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

40 flashcards

Flashcards on Compound Angle Formulae

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

4 quizzes

Quizzes on Compound Angle Formulae

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

29 questions

Exam questions on Compound Angle Formulae

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Compound Angle Formulae

Create custom exams across topics for better practice!

Try Maths Pure exam builder

12 papers

Past Papers on Compound Angle Formulae

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Compound Angle Formulae you should explore

Discover More Revision Notes Related to Compound Angle Formulae to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Compound & Double Angle Formulae

Double Angle Formulae

user avatar
user avatar
user avatar
user avatar
user avatar

342+ studying

190KViews

96%

114 rated

Compound & Double Angle Formulae

R addition formulae Rcos Rsin etc

user avatar
user avatar
user avatar
user avatar
user avatar

481+ studying

196KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered