Photo AI

Last Updated Sep 27, 2025

Double Angle Formulae Simplified Revision Notes

Revision notes with simplified explanations to understand Double Angle Formulae quickly and effectively.

user avatar
user avatar
user avatar
user avatar
user avatar

347+ students studying

5.6.2 Double Angle Formulae

Double angle formulae are trigonometric identities that express the trigonometric functions of double angles (i.e., 2θ) in terms of the trigonometric functions of the original angle θ. These formulae are very useful in simplifying expressions, solving trigonometric equations, and analyzing oscillatory motion in physics.

1. Sine of a Double Angle:

The sine of a double angle is given by:

sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta)

  • This formula is derived from the sine sum identity sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B by setting A=B=θ.A = B = \theta.

2. Cosine of a Double Angle:

The cosine of a double angle has three equivalent forms:

cos(2θ)=cos2(θ)sin2(θ)\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)

Using the Pythagorean identity sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1, the above can also be written as:

cos(2θ)=2cos2(θ)1\cos(2\theta) = 2\cos^2(\theta) - 1 or cos(2θ)=12sin2(θ)\cos(2\theta) = 1 - 2\sin^2(\theta)

  • These forms are useful depending on whether you know or want to simplify the expression in terms of sine or cosine.

3. Tangent of a Double Angle:

The tangent of a double angle is given by:

tan(2θ)=2tan(θ)1tan2(θ)\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)}

  • This formula is derived from the tangent sum identity tan(A+B)=tanA+tanB1tanAtanBby setting A=B=θ.\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} by\ setting\ A = B = \theta.

4. Example Problems Using Double Angle Formulae:

infoNote

Example 1: Calculate sin(2θ) if sin(θ)=35\sin(2\theta)\ if\ \sin(\theta) = \frac{3}{5} and cos(θ)=45\cos(\theta) = \frac{4}{5}.

  • Solution:
  • Use the double angle formula for sine: sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2\sin(\theta)\cos(\theta)
  • Substitute the given values: sin(2θ)=2×35×45=2425\sin(2\theta) = 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25}
  • So, sin(2θ)=2425\sin(2\theta) = \frac{24}{25}.
infoNote

Example 2: Simplify cos(2θ) if cos(θ)=513\cos(2\theta)\ if\ \cos(\theta) = \frac{5}{13}.

  • Solution:
  • Use the double angle formula for cosine: cos(2θ)=2cos2(θ)1\cos(2\theta) = 2\cos^2(\theta) - 1
  • First, calculate cos2(θ)\cos^2(\theta): cos2(θ)=(513)2=25169\cos^2(\theta) = \left(\frac{5}{13}\right)^2 = \frac{25}{169}
  • Substitute into the formula: cos(2θ)=2×251691=50169169169=50169169=119169\cos(2\theta) = 2 \times \frac{25}{169} - 1 = \frac{50}{169} - \frac{169}{169} = \frac{50 - 169}{169} = \frac{-119}{169}
  • So, cos(2θ)=119169\cos(2\theta) = \frac{-119}{169}.
infoNote

Example 3: Solve tan\tan(2 θ \theta) = 1 for 0θ180.0^\circ \leq \theta \leq 180^\circ.

  • Solution:
  • First, solve for 2θ 2\theta using the basic tangent identity: tan(2θ)=12θ=45 or 2θ=225\tan(2\theta) = 1 \quad \Rightarrow \quad 2\theta = 45^\circ \text{ or } 2\theta = 225^\circ
  • Therefore, θ=452=22.5\theta = \frac{45^\circ}{2} = 22.5^\circ or θ=2252=112.5\theta = \frac{225^\circ}{2} = 112.5^\circ.
  • The solutions are θ=22.5\theta = 22.5^\circ and θ=112.5\theta = 112.5^\circ.

5. Applications of Double Angle Formulae:

  • Simplifying Trigonometric Expressions: Double angle formulae are often used to rewrite trigonometric expressions in a simpler form, especially when dealing with powers of trigonometric functions.
  • Solving Trigonometric Equations: These identities are crucial for solving equations where angles are involved in double forms.
  • Calculus: In integration and differentiation, double angle identities help simplify integrals or derivatives involving trigonometric functions.
  • Physics: Double angle identities are used in wave mechanics, signal processing, and oscillations.

Summary:

  • Double angle formulae are key trigonometric identities that simplify the analysis of trigonometric functions when dealing with angles that are multiples of other angles.
  • The formulae for sine, cosine, and tangent of double angles are essential tools for simplifying expressions, solving equations, and applying trigonometric concepts in calculus and physics.
  • Mastery of these identities enhances your ability to tackle more complex problems in trigonometry and related fields.

Double Angle Formulae

The compound angle formulae can be used to derive double angle formulae.

infoNote

Example: cos(2θ)\cos(2\theta)

cos(2θ)=cos(θ+θ)=cosθcosθsinθsinθ=cos2θsin2θ\cos(2\theta) = \cos(\theta + \theta) = \cos\theta\cos\theta - \sin\theta\sin\theta = \cos^2\theta - \sin^2\theta
  • Write as θ+θ\theta + \theta
  • Expand using cos(A+B)\cos(A+B)
cos(2θ)cos2θsin2θ\therefore \cos(2\theta) \equiv \cos^2\theta - \sin^2\thetacos(2θ)(1sin2θ)sin2θ12sin2θ\cos(2\theta) \equiv (1 - \sin^2\theta) - \sin^2\theta \equiv 1 - 2\sin^2\thetacos(2θ)cos2θ(1cos2θ)2cos2θ1\cos(2\theta) \equiv \cos^2\theta - (1 - \cos^2\theta) \equiv 2\cos^2\theta - 1

infoNote
  • Example: sin(2θ)\sin(2\theta)
sin(2θ)=sin(θ+θ)=sinθcosθ+cosθsinθ=2sinθcosθ\sin(2\theta) = \sin(\theta + \theta) = \sin\theta\cos\theta + \cos\theta\sin\theta = 2\sin\theta\cos\theta

infoNote
  • Example: tan(2θ)\tan(2\theta)
tan(2θ)=tan(θ+θ)=tanθ+tanθ1tanθtanθ=2tanθ1tan2θ\tan(2\theta) = \tan(\theta + \theta) = \frac{\tan\theta + \tan\theta}{1 - \tan\theta\tan\theta} = \frac{2\tan\theta}{1 - \tan^2\theta}

Solve each equation for x x in the interval 0x3600 \leq x \leq 360^\circ.

Give your answers to 11 decimal place where appropriate.

a) cos(2x)+cosx=0\cos(2x) + \cos x = 0

  1. cos2x=cos2xsin2x2cos2x1\cos 2x = \cos^2 x - \sin^2 x \equiv 2\cos^2 x - 1
  2. 2cos2x1+cosx=02cos2x+cosx1=02\cos^2 x - 1 + \cos x = 0 \Rightarrow 2\cos^2 x + \cos x - 1 = 0
  3. Let cosx=12\cos x = \frac{1}{2}
x=arccos(12)=60,300x = \arccos\left(\frac{1}{2}\right) = 60, 300 cosx=1x=arccos(1)=180\cos x = -1 \Rightarrow x = \arccos(-1) = 180 image

Thus, the solutions are:

x=60,180,300x = 60, 180, 300


Solve each equation for x in the interval 0x2πc0 \leq x \leq 2\pi^c.

Give your answers to 1 decimal place where appropriate.

b) sin2x+cosx=0\sin 2x + \cos x = 0

2sinxcosx+cosx=02\sin x \cos x + \cos x = 0

Expand sin2x\sin 2x:

  • Bad Method:
2sinxcosx+1=0(Divide by cosx)2\sin x \cos x + 1 = 0 \quad \text{(Divide by } \cos x\text{)} 2sinx=12\sin x = -1 sinx=12\sin x = -\frac{1}{2} x=16π,π+16π,2π16πx = -\frac{1}{6}\pi, \pi + \frac{1}{6}\pi, 2\pi - \frac{1}{6}\pi image

Graph drawn below the calculations to show solutions.

x=7π6,11π6x = \frac{7\pi}{6}, \frac{11\pi}{6} image

Solution missing for cosx=0\text{Solution missing for } \cos x = 0

  • Good Method:
cosx(2sinx+1)=0\cos x (2\sin x + 1) = 0 2sinx+1=0,cosx=02\sin x + 1 = 0, \quad \cos x = 0 2sinx=12\sin x = -1 sinx=12\sin x = -\frac{1}{2} x=16π,π+16π,2π16πx = -\frac{1}{6}\pi, \pi + \frac{1}{6}\pi, 2\pi - \frac{1}{6}\pi image

Graph drawn below the calculations to show solutions.

x=7π6,11π6x = \frac{7\pi}{6}, \frac{11\pi}{6} cosx=0x=π2,3π2\cos x = 0 \Rightarrow x = \frac{\pi}{2}, \frac{3\pi}{2} image

Graph drawn below the calculations to show solutions.

x=π2,7π6,3π2,11π6\boxed {x = \frac{\pi}{2}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}}


infoNote

Q2 (Jan 2006, Q4) Solve the equation 2sin2θ+cos2θ=12 \sin 2\theta + \cos 2\theta = 1, for 0θ<3600^\circ \leq \theta < 360^\circ.

2(2sinθcosθ)+12sin2θ=12(2\sin\theta \cos\theta) + 1-2\sin^2\theta = 1

4sinθcosθ2sin2θ=04\sin \theta\cos \theta -2\sin ^2\theta = 0

2sinθ(2cosθsinθ)=02\sin\theta (2\cos\theta - \sin \theta) = 0

2sinθ=02\sin\theta = 0

sinθ=0\sin\theta = 0

θ=0,360,180\theta = 0, \xcancel{360^\circ}, 180^\circ

] - 1

cos2θ=cos2θsin2θ\cos 2\theta = \cos^2\theta - \sin^2\theta

=2cos2θ1=2\cos^2\theta -1

=12sin2θ=1 - 2\sin^2\theta

2cos2θsinθ=02\cos 2\theta-\sin\theta = 0

2cos2θ=sinθ2\cos 2\theta=\sin\theta

2=sinθcosθ=tanθ2 = \frac {\sin\theta}{\cos\theta} = \tan\theta

θ=arctan(2)=63.435,180+63.433=243.435\theta = \arctan(2) = 63.435, 180 + 63.433 = 243.435

x=0,63.44,180,243.44\boxed {x = 0, 63.44, 180, 243.44}


infoNote

Q8 (Jun 2015, Q2) Express 6cos2θ+sinθ6 \cos 2\theta + \sin \theta in terms of sinθ\sin \theta. Hence solve the equation 6cos2θ+sinθ=06 \cos 2\theta + \sin \theta = 0, for 0θ<3600^\circ \leq \theta < 360^\circ.


  1. Expressing in terms of cosθ\cos\theta : cos2θ=cos2θsin2θ2cos2θ112sin2θ\cos2\theta = \cos^2\theta - \sin^2\theta \\ \Rightarrow 2\cos^2\theta-1 \\ \Rightarrow 1-2\sin^2\theta

  2. Expressing in terms of sinθ\sin\theta: 6(12sin2θ)+sinθ=06(1 - 2\sin^2\theta) + \sin\theta = 0

612sin2θ+sinθ=06 - 12\sin^2\theta + \sin\theta = 0

Rearrange: 12sin2θsinθ6=012\sin^2\theta - \sin\theta - 6 = 0

  1. Solve the quadratic equation: sinθ=34,θ=41.810\sin\theta = \frac{3}{4}, \theta = 41.810^\circ

  2. Use the graph or unit circle to find all solutions: θ=48.59,131.4,221.8,318.2\theta = 48.59^\circ, 131.4^\circ, 221.8^\circ, 318.2^\circ


infoNote

Q1 (Jan 2009, Q9)

  1. (i) By first expanding cos(2θ+θ)\cos(2\theta + \theta), prove that cos3θ=4cos3θ3cosθ\cos 3\theta = 4 \cos^3\theta - 3 \cos\theta. Expressing in terms of cosθ\cos\theta :

cos2θ=cos2θsin2θ2cos2θ112sin2θ\cos2\theta = \cos^2\theta - \sin^2\theta \\ \Rightarrow 2\cos^2\theta-1 \\ \Rightarrow 1-2\sin^2\theta

cos(2θ+θ)=cos(2θ)cos(θ)sin(2θ)sin(θ)\cos(2\theta + \theta) = \cos(2\theta)\cos(\theta) - \sin(2\theta)\sin(\theta)

Substituting the identities:

=(2cos2θ1)cos(θ)2sinθcosθsin(θ)= (2\cos^2\theta - 1)\cos(\theta) - 2\sin\theta\cos\theta\sin(\theta)

Expanding:

=2cos3θcosθ2sin2θcosθ= 2\cos^3\theta - \cos\theta - 2\sin^2\theta\cos\theta

Using sin2θ=1cos2θ\sin^2\theta = 1 - \cos^2\theta:

=2cos3θcosθ2cosθ(1cos2θ)= 2\cos^3\theta - \cos\theta - 2\cos\theta(1 - \cos^2\theta)=2cos3θcosθ2cosθ+2cos3θ= 2\cos^3\theta - \cos\theta - 2\cos\theta + 2\cos^3\theta

=4cos3θ3cosθ= 4\cos^3\theta - 3\cos\theta

  1. (ii) Hence prove that cos6θ=32cos6θ48cos4θ+18cos2θ1\cos 6\theta = 32\cos^6\theta - 48\cos^4\theta + 18\cos^2\theta - 1.
cos(6θ)=cos(2(3θ))=2cos2(3θ)1\cos(6\theta) = \cos(2(3\theta)) = 2\cos^2(3\theta) - 1=2cos3(3θ)cos(3θ)1= 2\cos^3(3\theta) - \cos(3\theta) - 1

Expanding:

=2[4cos3(3θ)3cosθ)][4cos3(3θ)3cosθ)]1= 2\left [4\cos^3(3\theta) - 3\cos\theta)\right ]\left [4\cos^3(3\theta)-3\cos\theta)\right ] - 1=2[16cos6(3θ)12cos4(3θ)12cos4(3θ)9cos2θ)]1= 2\left [16\cos^6(3\theta) - 12\cos^4(3\theta)- 12\cos^4(3\theta)-9\cos^2\theta)\right ] - 1

Simplifying:

=32cos6θ48cos4θ+18cos2θ1= 32\cos^6\theta - 48\cos^4\theta + 18\cos^2\theta - 1

  1. (iii) Show that the only solutions of the equation 1+cos6θ=18cos2θ1 + \cos 6\theta = 18\cos^2\theta are odd multiples of 9090^\circ. Substitute cos6θ\cos 6\theta from part (ii):
1+(32cos6θ48cos4θ+18cos2θ1)=18cos2θ32cos6θ48cos4θ+18cos2θ=18cos2θ1 + (32\cos^6\theta - 48\cos^4\theta + 18\cos^2\theta - 1)\\ = 18\cos^2\theta 32\cos^6\theta - 48\cos^4\theta + 18\cos^2\theta \\= 18\cos^2\theta

Rearrange:

32cos6θ48cos4θ=032\cos^6\theta - 48\cos^4\theta = 0

Factor out common terms:

16cos4θ(2cos2θ3)=016\cos^4\theta (2\cos^2\theta - 3) = 0

cos2θ=32\cos^2\theta = \frac{3}{2} \quad (Not possible, cos2θ\cos^2\theta must be 1\leq 1)

Thus, cos2θ=0\cos^2\theta = 0, implying cosθ=0\cos\theta = 0.

Therefore, θ\theta must be odd multiples of 9090^\circ.


Books

Only available for registered users.

Sign up now to view the full note, or log in if you already have an account!

500K+ Students Use These Powerful Tools to Master Double Angle Formulae

Enhance your understanding with flashcards, quizzes, and exams—designed to help you grasp key concepts, reinforce learning, and master any topic with confidence!

40 flashcards

Flashcards on Double Angle Formulae

Revise key concepts with interactive flashcards.

Try Maths Pure Flashcards

4 quizzes

Quizzes on Double Angle Formulae

Test your knowledge with fun and engaging quizzes.

Try Maths Pure Quizzes

29 questions

Exam questions on Double Angle Formulae

Boost your confidence with real exam questions.

Try Maths Pure Questions

27 exams created

Exam Builder on Double Angle Formulae

Create custom exams across topics for better practice!

Try Maths Pure exam builder

12 papers

Past Papers on Double Angle Formulae

Practice past papers to reinforce exam experience.

Try Maths Pure Past Papers

Other Revision Notes related to Double Angle Formulae you should explore

Discover More Revision Notes Related to Double Angle Formulae to Deepen Your Understanding and Improve Your Mastery

96%

114 rated

Compound & Double Angle Formulae

Compound Angle Formulae

user avatar
user avatar
user avatar
user avatar
user avatar

205+ studying

191KViews

96%

114 rated

Compound & Double Angle Formulae

R addition formulae Rcos Rsin etc

user avatar
user avatar
user avatar
user avatar
user avatar

263+ studying

180KViews
Load more notes

Join 500,000+ A-Level students using SimpleStudy...

Join Thousands of A-Level Students Using SimpleStudy to Learn Smarter, Stay Organized, and Boost Their Grades with Confidence!

97% of Students

Report Improved Results

98% of Students

Recommend to friends

500,000+

Students Supported

50 Million+

Questions answered